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a b s t r a c t

Manually picking regularly and densely distributed first breaks (FBs) are critical for shallow velocity-
model building in seismic data processing. However, it is time consuming. We employ the fully-
convolutional SegNet to address this issue and present a fast automatic seismic waveform classifica-
tion method to pick densely-sampled FBs directly from common-shot gathers with sparsely distributed
traces. Through feeding a large number of representative shot gathers with missing traces and the
corresponding binary labels segmented by manually interpreted fully-sampled FBs, we can obtain a well-
trained SegNet model. When any unseen gather including the one with irregular trace spacing is
inputted, the SegNet can output the probability distribution of different categories for waveform clas-
sification. Then FBs can be picked by locating the boundaries between one class on post-FBs data and the
other on pre-FBs background. Two land datasets with each over 2000 shots are adopted to illustrate that
one well-trained 25-layer SegNet can favorably classify waveform and further pick fully-sampled FBs
verified by the manually-derived ones, even when the proportion of randomly missing traces reaches
50%, 21 traces are missing consecutively, or traces are missing regularly.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Seismic data have been commonly used to understand the
stratigraphic structures and to predict the distribution of oil and gas
in the depth of thousands of meters. The first arrivals correspond to
first breaks (FBs) contain important feature information. For
instance, they can be adopted to remove the effect of the shallow
fluctuating weather layer, which is the cornerstone of the subse-
quent seismic data processing and interpretation (Yilmaz, 2001).
Moreover, they can be utilized to estimate the source wavelet,
which is the basis of the forward modelling and seismic inverse
problem, and to build the shallow velocity model, which is useful
for seismic migration and full waveform inversion (Yilmaz, 2001; Li
et al., 2019; Liu et al., 2020; Yao et al., 2020). Consequently, to detect
the first arriving waves or to pick FBs is helpful for geophysicists.

Manual picking is the most straightforwardmethod. In addition,
y Elsevier B.V. on behalf of KeAi Co
it can introduce any prior knowledge, such as the spatial continuity
of first arriving waves. Even for low-quality traces or missing traces,
the brain networks can still interpret FBs by making use of the
information at neighborhood traces. However, due to increasingly
seismic traces, especially for wide-azimuth and high-density
acquisition, manual picking is time-consuming and expensive.
Various (semi-)automated first-break picking methods have been
proposed and developed to improve the picking efficiency and to
alleviate the pressure of interpreters. Each method has its own
advantages and disadvantages. One traditionally automatically
first-break picking technique is based on single-trace time- or
frequency-domain methods operating on single- or multi-
component recordings from an individual receiver level, such as
energy based methods (Coppens, 1985; Sabbione and Velis, 2010),
entropy based methods (Sabbione and Velis, 2010), fractal dimen-
sion based methods (Boschetti et al., 1996; Jiao and Moon, 2000),
and higher-order statistics based methods (Yung and Ikelle, 1997;
Saragiotis et al., 2004; Tselentis et al., 2012). In general, such
methods can quickly and stably pick FBs on data with high signal-
to-noise ratio (SNR). Compared with the time- or frequency-
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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domain methods, time-frequency domain methods are developed
to increase one time dimension or one frequency dimension, and
have thus more potential to stably pick FBs in the case of relatively
low SNR and to even detect weak signals or weak first-break waves
(Galiana-Merino et al., 2008; Mousavi et al., 2016).

In contrast to single-trace (semi-)automated methods, multi-
trace ones, such as cross-correlation based methods (Gelchinsky
and Shtivelman, 1983; Molyneux and Schmitt, 1999) or template
matching methods (Plenkers et al., 2013; Caffagni et al., 2016),
make use of information on multiple receivers within the array
simultaneously. In essence, multi-trace methods can pick FBs by
taking maximum values of the cross-correlation or convolution
results from trace(s) to trace(s). Therefore, the original multi-trace
time-space amplitude information are generally utilized to pick
FBs. Due to the usage of simultaneously multiple traces or high-
dimension (2D or 3D) information, the multi-trace cross-correla-
tion or templatematching basedmethods can identify weak signals
or pick FBs at low SNR (Gibbons and Ringdal, 2006; Caffagni et al.,
2016) to some extent. However, they often do not adapt to the
situations that the waveforms changewith the trace and there exist
missing traces or bad traces.

Most single- or multi-trace methods compute only one attribute
for each time sampling point and subsequently select the locations
with maximum- or minimum-value attributes as FBs. To improve
the picking stability, some attributes including those in the time
domain, frequency domain, time-frequency domain and/or time-
space domain are considered to combine together to classify
waveforms and to further pick FBs by artificial rules (Gelchinsky
and Shtivelman, 1983; Akram and Eaton, 2016; Khalaf et al., 2018)
or the traditional fully-connected artificial neural networks (ANNs)
(McCormack et al., 1993; Gentili and Michelini, 2006; Maity et al.,
2014). Multi-attribute first-break picking approaches based on
artificial rules are straightforward and explicable. However, they
increase the number of parameters that need to be tuned, when
multi-attribute generators are chosen. For multi-attribute ap-
proaches based on the fully-connected ANNs, they can automati-
cally analyze and combine multiple attributes extracted from the
data at the cost of learning a large number of network parameters.
Nevertheless, they usually require extra attribute extraction and
attribute optimization.

Convolutional neural networks (CNNs), which is one developed
type of ANNs, have become popular in recent years by breaking
previous records for various classification tasks especially in image
and speech processing (LeCun et al., 2015; Russakovsky et al., 2015;
Goodfellow et al., 2016; Silver et al., 2016; Esteva et al., 2017; Perol
et al., 2018). At the cost of training big data, CNNs have the ad-
vantages to automatically extract features or attributes and
meanwhile classify data. Moreover, they can be designed deep, due
to the properties of local perception and weight sharing. In recent
several years, CNNs were successfully introduced into the field of
solid Earth geoscience including waveform classification (Bergen
et al., 2019; Dokht et al., 2019; Pham et al., 2019; Wu et al., 2019).
For instance, several 1D-CNNs are developed to effectively detect or
classify earthquake phases or micro-seismic events, and to further
pick FBs trace by trace or receiver by receiver (Chen et al., 2019;
Wang et al., 2019; Wu et al., 2019; Zhu and Beroza, 2019). Several
2D-CNNs are presented to effectively detect or classify seismic
waveforms and to further pick FBs without involving the cases of
missing traces or poor-quality traces (Yuan et al., 2018; Hu et al.,
2019; Xie et al., 2019; Zhao et al., 2019; Liao et al., 2021).

In this paper, we apply the deep fully-convolutional SegNet,
consisting of an end-to-end encoder-decoder automatic spatio-
temporal feature extractor and a following pixel-wise classifier
(Badrinarayanan et al., 2017), to automatically segment post-FBs
data and pre-FBs background in common-shot gathers. At the
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cost of learning various representative shot gathers with sparsely
distributed traces and the manually interpreted dense FBs, one
well-trained deep SegNet can be yielded to pick FBs of any unseen
gather having differently distributed missing traces or regularly
distributed traces with a rough trace interval. The network archi-
tecture is designed deeply to contain a set of convolutional layers
and pooling layers, in order to see more information of adjacent
seismic traces and to further pick FBs especially in the positions of
missing traces. The presented approach does not need pre-
extracted and pre-chosen attribute steps, as well as an additional
interpolation step. The interpolation is often required to recon-
struct sparsely distributed traces and useful for subsequent seismic
data processing and inversion (Jia and Ma, 2017; Sun et al., 2019;
Wang et al., 2019).

We begin this paper with the introduction of themotivation and
general framework, as well as the description of data preparation,
network architecture design, network model evaluation, model
update and the optimum model application. One seismic dataset
including 2251 shot gathers and the other dataset including 2273
gathers are then adopted to illustrate the effectiveness of the pro-
posed 25-layer SegNet for classifying waveform and further picking
FBs directly from shot gathers with different distributions of
missing traces. Finally, a discussion and some conclusions are given.

2. Methodology

2.1. Motivation and general framework

First breaks (FBs) refer to the earliest arrival travelling time of
seismic wave to receivers in the field of P-wave exploration.
Therefore, there is only one FB in each seismic trace. Because some
reflected waveforms below FBs, such as some separated waves, are
similar to first-break ones, and there exists the unbalanced label
data challenge, direct classification of FBs and other non-FBs cate-
gories may give rise to some false FBs (Yuan et al., 2018). As
everyone sees, the waveform features above and below FBs are
typically different in seismic common-shot gathers. There is only
background or noise above FBs, which are usually spatially uncor-
related, while there are dominant signals below FBs, which are
more spatially correlated. Consequently, we can divide shot gathers
into two classes including pre-FBs background and post-FBs data. In
this way, the boundaries between two classes are FBs.

It is important to obtain regularly and densely distributed FBs
from sparsely distributed traces. One challenge of first-break
picking is that trace intervals in each shot gather are often
different, or trace intervals are regularly large. The quality of first-
break picking for these sparsely distributed traces can decrease
the quality of the shallow velocity-model building. Herein, we
desire to predict the regularly dense waveform classification from
shot gathers with randomly or regularly missing traces and to
further pick FBs directly. More concretely, we want to find an
optimal function to convert shot gathers with missing traces into
mask data, where each trace is an idea step function. Due tomissing
traces, the optimal function should have the ability to capture in-
formation of adjacent seismic traces. The convolution-based net-
works have been demonstrated to be suitable to classify 2D or 3D
images and easy to achieve more translation invariance for robust
classification via series of high-dimensional convolution layers and
pooling layers. Recently, the fully convolutional networks (FCNs)
without fully-connected layers (FCLs), proposed by Long et al.
(2015) in the context of image and semantic segmentation, was
one popular architecture including at seismic exploration field. The
FCNs have the advantages of achieving end-to-end pixel-wise
classification and designing the network architectures flexibly, in
contrast to the typical sliding-window CNNs involving one or
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several FCLs before the classification. Several variants of FCNs
including U-net (Ronneberger et al., 2015), DeepLab (Chen et al.,
2018), SegNet (Badrinarayanan et al., 2017) and DeconvNet (Noh
et al., 2015), have been recently widely developed. Taking missing
traces into account, the network should be designed relatively deep
to see larger context and to utilize more information of adjacent
seismic traces. From the viewpoint of the memory, we choose the
SegNet architecture, which does not transfer the entire feature
maps extracted in the encoder to the corresponding decoder but
instead reuse pooling indices in the corresponding decoder,
compared with U-net.

Taking SegNet as the function set, the regularly dense pixel-wise
classification directly from a certain shot gather X with missing
traces can be expressed as

P ¼ SegNet(X, m), (1)

where P represents the predicted probability with two channels
indicating the background class and the signal-dominant class, and
m represents the network parameters or variables in the function.
SegNet represents a mapping function from X to P, involving some
hyper-parameters such as the number of the convolution layers, the
number of the (un)pooling layers, and the size of the filters in the
convolution layers. As denoted in the SegNet architecture for
waveform classification and first-break picking (Fig. 1), SegNet
consists of an end-to-end encoder-decoder feature extractor with
trainable parameters and a following classifier without any learned
parameters. The SegNet input is the preprocessed one-channel shot
gather with missing traces, while the output is the two-channel
map that is supervised by the given labels with one pre-FBs back-
ground class and the other post-FBs data class.

At the cost of training a large amount of labeled data, which can
be obtained by manually interpreting dense FBs, SegNet can auto-
matically extract statistically spatio-temporal features or attributes
rather than pre-computing several attributes sensitive to FBs. The
optimal extractor learned from various labeled data can yield the
high-level features condensed by the previous series of layers with
the property that there is large difference between the high-level
feature values above FBs and those below FBs, but there is small
difference among feature values at the same category including
those in missing traces. As a result, these high-level features can be
fed into a classifier to convert into the pixel-wise probability, which
can be used to interpret each pixel as either pre-FBs background
class or post-FBs signal-dominant class.

Our general framework for waveform classification and first-
break picking from shot gathers with sparsely distributed traces
is summarized as follows:

1) Data preparation. Divide data into three subsets including the
training set, validation set and test set, and preprocess them
with the same processing flow.

2) Network architecture design. Design the network architecture
including the number of the (de)convolution layers, the number
of the (un)pooling layers, the size of the filters, and the combi-
nation mode of different layers.

3) Network model evaluation. Define a loss function and several
performance metrics to quantitatively evaluate the quality of a
large number of models.

4) The optimum model choice. Find an optimum model by using
the gradient descent and an early stopping strategy according to
both the training set and the validation set.

5) The optimum model application. Apply the optimum model to
unseen gathers in the test set to automatically extract the fea-
tures, to meanwhile classify waveforms and to further pick FBs.
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2.2. Data preparation

To obtain an effectively well-trained generalizable model or
SegNet classifier and picker, three subsets including the training,
validation and test sets are prepared. The training set is used for
training the model or optimizing network parameters, as well as
designing the learning rate, which is a hyper-parameter in the
model update. The validation set is adopted to evaluate whether
the learnt network is overfitting, and to determine the network
hyper-parameters. The test set is considered to investigate the
generalization ability of the well-trained model to unseen shot
gathers. In both the training and validation sets, various typical
diverse samples including shot gathers with different kinds of
noise, different geometries of FBs, as well as different distributions
of missing traces should be prepared as soon as possible and are
cropped into the same size of both time dimension and space
dimension. Accordingly, the labels used for supervising the
network model are acquired by manually picking dense FBs and
then segmenting gathers into one pre-FBs background class and the
other post-FBs data class. Due to only two classes, the labels are
quantified by binary maps. The ideal binary vectors (1 0) and (0 1)
are designed to denote post-FBs data class and pre-FBs background
class, respectively. An example of the input shot gather and the
corresponding output label can be seen in Fig. 1. To learn the model
stably, fast and effectively, all samples in different sets should be
further preprocessed mainly including outliers or heavy noise
elimination, surface wave attenuation, filtering, cropping and
normalization.

2.3. Network architecture design

There exists only one boundary line in each shot gather, but real
missing traces can complicate seismic waveform classification and
first-break picking. The shallow-layer model can mainly learn the
special commonness of waveforms, but it is not easy to accurately
classify some complex waveforms with strong lateral variation and
those at the locations of relatively dense missing traces. Therefore,
the SegNet model is still required to be relatively deep. On the
whole, several down-sampling stages in the encoder and up-
sampling stages with the same number in the decoder, as well as
a final pixel-wise classification layer, are designed, as shown in
Fig. 1. Inside each stage, the (de)convolution layer consists of
convolution, batch normalization (BN) and rectified linear unit
(ReLU) activation, and (un)pooling is placed between several (de)
convolution layers.

For each convolution layer, as denoted in the blue boxes of Fig. 1,
its output can be expressed as

Cl ¼ max{0, BN(Xl*Wl þ Bl)}, (2)

where the symbol * is a 2Dconvolution or deconvolution operator,Wl

is the 2D convolutional filter or the weights at the l-th layer, Bl is an
aggregation of the bias that is broadcasted to each neuron in the
feature or attribute map at the l-th layer, Xl is the input of the
convolution layer, andCl is theoutputof the convolution layer.When l
is 1, Xl is the input shot gathers or X in Eq. (1). BN represents a
differentiable batch-normalization transformation that normalizes
the convolution output across amini-batch (Ioffe and Szegedy, 2015),
and thus has the advantage of less internal covariate shift from
shallowlayers todeep layers. Theactivation functionmaxor thestate-
of-the-art ReLU represents an element-wisemaximization operation,
which can enable the SegNet model to be a universal nonlinear
function approximator. It has been demonstrated that ReLU has the
advantages of avoiding the notoriousvanishing gradient problemand
promoting the model sparsity (Glorot et al., 2011).



Fig. 1. The SegNet architecture for seismic waveform classification and first-break picking directly from shot gathers with sparsely distributed traces. Blue boxes represent the
convolution layers containing a convolution operation, a batch normalization operation and an activation operation, green boxes represent the pooling operators, red rectangles
represent the unpooling operators implemented by pooling indices computed in the pooling step, and the yellow box represents the Softmax classifier.

S.-Y. Yuan, Y. Zhao, T. Xie et al. Petroleum Science 19 (2022) 162e179
For the pooling layer, as denoted in the green boxes of Fig. 1, its
output can be expressed as

Dl ¼ POOL(Cl), (3)

where the symbol POOL represents a downsampling or pooling
operator, and Dl represents the pooling result at the l-th layer,
whose the size is smaller than that of the feature map Cl. We use
max-pooling as a POOL operator to yield the maximum values by
comparing the neighborhood of the feature map in a sliding win-
dow way, and record the locations of the maximum values with
indices at the same time. The max-pooling layer can be used to
typically compress the feature maps along all dimensions while
retaining the most important information. Several stacked max-
pooling layers can gradually reduce data dimension, and thus act
as a strong regularization for the network (Goodfellow et al., 2016)
to control overfitting. Furthermore, more pooling layers can ach-
ieve more translation invariance, which is useful for effectively
classifying translational, rotational and deformed spatiotemporal
waveform. It is also significant for adopting more pooling layers to
see the larger input image context (spatial window), which is useful
for the classification of shot gathers with sparsely distributed traces
due to the usage of more spatial neighborhood of statistical infor-
mation. However, the pooling operator can correspondingly lead to
a loss of spatial resolution of the feature maps. The increasingly
lossy of boundary details is not beneficial for spatiotemporal
waveform segmentation where boundary delineation correspond-
ing to FBs is vital. Here, the decoder uses pooling indices computed
in the max-pooling step of the corresponding encoder to perform
non-linear unpooling. This eliminates the need for learning to
upsample.

At last, a pixel-wise Softmax classifier is adopted to convert the
output of the attribute extractor into probability distribution over K
different possible classes:
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Pu;v;n ¼ exp
�
Yu;v;n

�,XK
k¼1

exp
�
Yk;v;n

�
; u ¼ 1;2; :::; K; (4)

where Pu,v,n represents the normalized probability that the v-th
data point in the n-th shot is classified into the u-th category, Yu,v,n

represents the predicted feature representation using an encoder-
decoder extractor composed of convolution layers and pool
layers, and K represents the number of classes. Because the Softmax
classifies each data point independently, the predicted P is also a K
channel. In our case, there are only two classes including noise-
dominant background and signal-dominant waveforms, so K
equals to 2. The predicted segmentation corresponds to the class
with the maximum probability at each pixel.
2.4. Network model evaluation

Because the quantity of the pre-FBs background class is com-
parable to that of the post-FBs data class, the binary cross-entropy
criterion in an original form is chosen as the model evaluator or the
loss function and is given as follows:

OðmÞ¼ � 1
N � V

XN
n¼1

XV
v¼1

X2
k¼1

Q k;v;n log
�
Pk;v;n

�

¼ � 1
N � V

XN
n¼1

XV
v¼1

�
Q1;v;n log

�
P1;v;n

�þ �
1�Q1;v;n

�
log

�
1�P1;v;n

��
;

(5)

where N represents the total shot number, V represents the total
sampling point or pixel number in a shot gather, m represents the
model or network parameters, Qk,v,n (k ¼ 1, 2) represents the
desired or true binary probability at the v-th data point of the n-th
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shot, and Pk,v,n represents the predicted binary probability via Eq.
(1). The closer the predicted probability distribution to the ideal
one, the smaller is the cross-entropy value or O(m), and therefore
the better the built model mapping X to P, as denoted in Eq. (1).

To quantitatively evaluate the well-trained model obtained by
minimizing Eq. (5) or the cross entropy as well as its generalization
performance, the accuracy between the predicted classification
results and the manually interpreted ones or the consistency be-
tween these two results are evaluated by using the following
expressions:

An ¼ (TPn þ TNn)/V, (6a)

a¼ 1
N

XN
n¼1

An; (6b)

Rn ¼ TPn / (TPn þ FNn), (6c)

r¼ 1
N

XN
n¼1

Rn; (6d)

where true positive TPn (n ¼ 1, 2, …, N) represents the number of
the sampling points in the n-th shot that correctly predict signal-
dominant class below FBs, true negative TNn represents the num-
ber of the sampling points in the n-th shot that successfully predict
background above FBs, and false negative FNn represents the
number of the sampling points in the n-th shot which fail to predict
signal-dominant class. The accuracy An and a give the percentage of
correctly classified sampling points in the n-th shot gather and all
shot gathers in the training, validation or test sets, respectively. The
recall rate Rn and r give the percentage of correctly classified signal-
dominant sampling points in the whole signal-dominant sampling
points of the n-th shot gather and all shot gathers in the training,
validation or test sets, respectively (Powers, 2011).
2.5. Model update

A linear combination of the model update Dmte1 from the
previous iteration te1 and the negative gradient of the loss function
is used to update the modelmt at the current iteration t as follows:�
Dmt ¼ mDmt�1 � htvOðmt�1Þ=vmt�1
mt ¼ mt�1 þ Dmt

; (7)

where m represents the momentum coefficient or the weight of the
last update Dmte1, ht represents the learning rate or the weight of
the negative gradient at the iteration t,
vOðmtÞ
vmt

¼ vOðmtÞ
vYt

vYt
vmt

¼ ðP�Q Þ vYt
vmt

represents the gradient of the loss
function with respect to the model or network parameters, vO(mt)/
vYt represents the gradient of the loss function with respect to the
input of the Softmax classifier or the output of the encoder-decoder
feature extractor, vO(mt)/vYt is equal to the difference between the
predicted probability P and the true probability Q, vYt/vmt repre-
sents the gradient of the output of the encoder-decoder feature
extractor with respect to the model parameters, and vYt/vmt can be
explicitly calculated by using the back-propagation algorithm
(Rumelhart et al., 1986). Herein, the gradient term vO(mt)/vmt is
approximately calculated by randomly selecting only a small subset

(mini-batch) of fXn;PngNn¼1 with improvements on efficiency and
convergence, which is the idea of a mini-batch stochastic gradient
descent (SGD) algorithm (LeCun et al., 1998).

When the loss for the training set decreases, whereas the vali-
dation loss increases (known as overfitting) or remains stable for a
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certain period of iterations, the training or the update is stopped.
The finally well-trained model SegNet with the optimal network
parameters mopt is saved as the automatic classifier.

2.6. The optimum model application

The saved optimum model can be used to convert any unseen
shot gather Xtest in the test set into a two-channel normalized
probability map with the following formula:

P ¼ SegNet(Xtest, mopt). (8)

When the predicted binary probability in a certain pixel of P is
closer to (1 0), we classify the corresponding input sampling point
in X into the post-FBs signal-dominant class. On the contrary, when
the predicted probabilitiy is closer to (0 1), we classify the input
sampling point into the pre-FBs background class. In an ideal case,
the sampling points above FBs should be one class, while those
below FBs are the other. Consequently, the boundary between the
two classes or the segmentation line in the classification map can
be located, i.e., FBs are picked. Furthermore, we take the maximum
of each position in the two-channel probability map to obtain a
single-channel probability map. It can be utilized to statistically and
directly evaluate the quality for waveform classification along with
first-break picking to some extent. The smaller the probability in
the single-channel probability map, the lower the accuracy of
waveform classification, or the more unreliable waveform classifi-
cation. In an ideal case, the single-channel probability curve for
each trace includingmissing traces should be one impulse function,
where there is only one minimum. The position of the minimum
value in each trace can be regarded as the FB. Consequently, we can
also pick FBs by locating the minimum values of the single-channel
probability map one trace by one trace.

3. Examples

The proposed method is tested on two land real datasets. The
two adjacent datasets are from two monitoring receiver lines
approximately 500 m apart. The topography of the real working
area is complicated with a surface elevation difference up to 500m.
One dataset including 2251 common-shot gathers is used for
training and validation, where 1751 gathers are randomly chosen
for training while the rest for validation. The other containing 2273
common-shot gathers is adopted for test. Each common-shot
gather with the sampling time of 4 ms consists of 168 traces and
is cropped into 550 time samples. For the two datasets, all the
sources are the same type of explosives, and the distances among
all receivers in each monitoring line are approximately the same.
All common-shot gathers are preprocessed by implementing out-
liers or heavy noise elimination, surface wave attenuation, filtering,
and normalization. For each processed gather with 92400 sampling
points, the labels are made by manually picking FBs and then
classifying pre-FBs background and post-FBs data.

For our examples, 25 layers including 18 convolution layers, 3
pooling layers, 3 unpooling layers and 1 Softmax layer are com-
bined into our network architecture by trial and error, as shown in
Fig. 1. Except the number of convolution filters in the final convo-
lution layer of the decoder is 2, the number of convolution filters in
the other convolution layers is 64. For each convolution kernel, the
size is fixed to 3 � 3 with stride of 1 (i.e., overlapping window).
Following the convolution layer, the max-pooling operator is per-
formed over a 2 � 2 pixel window, with stride of 2 (i.e., non-
overlapping window), and thus the resulting output through the
pooling operator indicted by the green box is sub-sampled by a
factor of 2 along both the time direction and the space direction.
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In all experiments, the 25-layer network is trained by using SGD
with a momentum coefficient of 0.9 and a mini-batch size of 5 shot
gathers. The learning rate starts from 0.01, and is reduced by a
factor of 0.2 every 5 epochs. The full pass of the training algorithm
over the entire training set using mini-batches is defined as an
epoch. The maximum number of epochs for training is assigned to
200, and the cross-entropy loss error is set to 0.001. For all exper-
iments, the biases are initialized as zero, and the weights are
initialized as noise in the normal distribution with a mean of zero.
The experimental machine configuration includes an Intel core i9-
9900k CPU (Central Processing Unit) and an Nvidia GeForce RTX
2080Ti GPU (Graphics Processing Unit).

To investigate the generalization performances of the well-
trained SegNet classifier and picker from the training and valida-
tion sets without missing traces or regularly dense distributed
traces, we apply it to three kinds of unseen testing data sets
including 2273 common-shot gathers with different ratios of
missing traces. For the well-trained network, the total classification
accuracy of both the 1751 testing gathers and the rest 500 valida-
tion gathers are over 99%. It may be noticed that it takes about 170 s
to classify 2273 gathers without parallel computing. Fig. 2aec
shows the accuracy distributions of 2273 testing common-shot
gathers with 0% missing traces (or without missing traces), with
10% randomlymissing traces of each gather andwith 50% randomly
missing traces of each gather (i.e., 84 traces from 168 traces are
randomly selected to fill in zero-valued amplitude) versus the
source location. It can be observed from Fig. 2a that the classifica-
tion accuracy of most gathers in the original 2273 testing gathers
without missing traces reach 98%, while the accuracy of only about
Fig. 2. The accuracy distributions of 2273 testing common-shot gathers with 0% (a), 10% (b)
from the training and validation sets without missing traces versus the explosive source lo
gather, and all receivers are located on the black monitoring line. In (a), the hollow pentagram
right corner denote the locations of the 15th shot, 243rd shot and 2213rd shot, respectively. Th
classify shot gathers with missing traces well.
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50 gathers is less than 98% and their corresponding sources are
generally close to the black monitoring line. As denoted in Fig. 2b
and c, the well-trained network from the training and validation
sets without missing traces presents the poor prediction effect on
2273 testing gathers with 10% and 50% randomly missing traces,
having the accuracy generally below 80%. It is obvious that thewell-
trained network from shot gathers without missing traces or with
regularly sampled traces cannot be generalized to classify shot
gathers with sparsely randomly distributed traces well. It can also
be seen that the gathers far from the black monitoring line have the
lower accuracy than those close to the monitoring line. In addition,
the more missing traces, the lower the accuracy.

In order to generalize to classify shot gathers withmissing traces
well, we generate an improved well-trained SegNet classifier and
picker from the training and validation sets with 50% randomly
missing traces, and apply it to various testing common-shot gathers
with different distributions of missing traces including 0% missing
traces to test its performances. For the newwell-trained model, the
total classification accuracy of 1751 testing gathers and the rest 500
validation gathers are 99.68% and 99.60%, respectively. Fig. 3aec
shows the accuracy distributions of 2273 testing gathers without
missing traces, with 50% randomly missing traces of each gather
and with 50% regularly missing traces of each gather versus the
source location. The testing sets of Fig. 3a and b are the same as
those of Fig. 2a and c, respectively. It can be observed from Fig. 3
that the new well-trained model from shot gathers with missing
traces has the excellent generalization ability with the accuracy of
almost all gathers over 98% even in the case of regularly missing
traces. The accuracy of only several gathers with sources located
and 50% randomly missing traces of each gather (c) based on the well-trained SegNet
cation. Colored dots denote source locations with the classification accuracy of single
and black hollow circle in the lower left corner, and the blue hollow circle in the upper

e well-trained model from shot gathers without missing traces cannot be generalized to



Fig. 3. The accuracy distributions of 2273 testing common-shot gathers with 0% missing traces (a), with 50% randomly missing traces of each gather (b) and with 50% regularly
missing traces (c) based on the new well-trained SegNet from the training and validation sets with 50% randomly missing traces of each gather versus the explosive source location.
The well-trained model has favorable generalization ability with the accuracy of almost all gathers over 98%.

Fig. 4. Comparisons among the classification accuracy of the first 500 common-shot gathers arranged from the smallest value to the largest value corresponding to 2273 testing
shot gathers in Figs. 2a and 3aec. The characters 0% MT/0% MT, 50% MT/0% MT, 50% MT/50% MT and 50% MT/50% regular MT in legend represents four dataset cases of Figs. 2a and
3aec, respectively. The accuracy of gathers more than 95% in each testing set is over 98%.
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near the black monitoring line is relatively low. Fig. 4 displays
careful comparisons among the classification accuracy of 500 shot
gathers in each testing dataset of Figs. 2a and Fig. 3aec. For all these
four dataset cases, gathers more than 95% in each testing set of
168
2273 gathers have the accuracy over 98%.
To focus on investigating the classification ability of post-FBs

signal-dominant waveforms, we calculate the recall of 2273
testing common-shot gathers or four well-generalized cases of



Fig. 5. The recall distributions of 2273 testing common-shot gathers versus the explosive source location corresponding to four dataset cases of Figs. 2a and 3ae3c, respectively. The
recall of almost all gathers in each testing set reach 97%.

S.-Y. Yuan, Y. Zhao, T. Xie et al. Petroleum Science 19 (2022) 162e179
Figs. 2a and Fig. 3aec, as shown in Fig. 5aed. For these four dataset
cases, the recall of almost all gathers reach 97%, even in the cases of
missing traces with different distributions. Compared with three
other cases, the generalization accuracy of the new well-trained
SegNet classifier and picker from samples with 50% randomly
missing traces to 2273 testing shot gathers without missing traces
are relatively most dependent on geometry related to the locations
of sources. The lower the recall, the higher detection error the
signal-dominant samples. In general, the wrong detection happens
near sharp top FBs and weak reflection areas.

To illustrate the effect of seismic waveform classification and
first-break picking based on the new well-trained SegNet model
from the training and validation sets with 50% randomly missing
traces more clearly and intuitively, we select two representatively
original common-shot gathers including the 243rd shot gather and
the 2213rd one. These two chosen original gathers share different
first-break shapes, different types of first-break waves, different
distances from the source to the monitoring receiver line, different
degrees of weak reflection below FBs, and different kinds of noise.
Furthermore, we focus on investigating the generalization ability to
the gathers with randomly, regularly and several special distribu-
tions of missing traces generated from these two representatively
original common-shot gathers.

Fig. 6 shows comparisons among the classification results and
first-break picking results of the gathers with five distributions of
missing traces made from the 243rd original shot gather (Fig. 6f). It
can be clearly observed that the classification results of the gathers
without missing traces (Fig. 6a), with 50% randomly missing traces
(Fig. 6b), with only missing traces on the left (Fig. 6c), with only
missing traces on the right (Fig. 6d) and with 50% regularly missing
traces (Fig. 6e) are in good accordance each other, even for the lo-
cations of six consecutive missing traces (Fig. 6b and d) between
169
the 135th trace and the 140th trace. In addition, five segment lines
(red lateral lines) between the pre-FBs background class (light blue
part) and the post-FBs signal-dominant class (dark blue part) or the
corresponding picked FBs are basically consistent and continuous
along the space direction. The single-channel probability maps
corresponding to Fig. 6aee are shown in Fig. 7aee, and local
zoomed plots of low-value probability zones of the middle 84th

traces in Fig. 7aee are shown in Fig. 8. It can be seen that the
maximum probability curve at every trace approximates a pulse-
like function with a small width of low-probability values, which
are related to the locations of FBs, as well as the uncertainty of
waveform classification and first-break picking. Fig. 9 shows the
differences between the automatically picked FBs and themanually
picked FBs versus the trace number. The average error between the
automatically picked FBs from 168 traces in each gather case and
the manually picked ones is less than two samples, suggesting that
the automatically picked FBs are close to the manually picked ones.
It can be inferred from Fig. 9 that the differences of FBs do not so
strongly depend on the distributions and the locations of missing
traces.

Fig. 10 shows comparisons among the classification results and
first-break picking results of the gathers with five distributions of
missing traces made from the other 2213rd original common-shot
gather (Fig. 10f) based on the new well-trained SegNet from the
training and validation sets with 50% randomly missing traces of
each gather. The corresponding source is far from the monitoring
receiver line, as denoted in the position of the blue hollow circle in
Fig. 2a. One can clearly see that the classification results of five
gathers with different distributions are good. Moreover, the cor-
responding picked FBs are visually consistent and spatially
continuous, even for the locations at 13 consecutive missing traces
(Fig. 10b and d) between the 30th trace and the 44th trace except for
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Fig. 7. Comparisons among the single-channel probability maps corresponding to Fig. 6aee. The black and white represent the low- and high-value probability, respectively. Red
lateral dashed lines represent the manually picked FBs from the common-shot gather of Fig. 6f, which are regarded as the reference. It can be observed that almost all referenced FBs
are located in low-value zones of five probability maps.
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the 35th trace and the 37th trace. Fig. 11aee displays the single-
channel probability maps derived by predicting the original
gather and the other four generated gathers, and Fig. 12 displays
their corresponding local zoomed plots of low-value probability
zones in the middle traces. It can be observed that the probability
curve at each trace looks like a pulse function with several
continuous low-value probabilities. The differences between the
automatically picked FBs and the manually picked FBs versus the
trace number are shown in Fig. 13. The average error between the
automatically picked FBs from 168 traces in each gather case and
the manually picked ones is not more than two samples. In contrast
to five cases derived from the 243rd original common-shot gather,
the first-break picking of five distributions gathers generated from
the 2213rd original gather are relatively unstable and more
dependent on the distributions of missing traces, as indicated in
Figs. 9 and 13.

To illustrate why the new well-trained SegNet classifier and
picker can directly classify seismic waveform and subsequently pick
FBs at the positions of missing traces, and to further test its
Fig. 6. Comparisons among the classification results and first-break picking results of the ga
common-shot gather (f) based on the new well-trained SegNet. The representatively crop
arrows), one very weak post-FBs reflection area (red rectangle) similar to the pre-FBs backgro
waves. The classification results are overlaid by the picked FBs (red lateral lines) and the se
traces. The classification accuracy for five cases is over 99%. Furthermore, the picked FBs ar
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generalization ability, we choose another representative common-
shot gather in the test set and make a special gather obtained by
replacing 21 consecutive traces of the original gather from the 74th

to 94th traces with zero. The chosen representative original gather
(Fig. 14c) is the 15th shot located at the location of the hollow
pentagram in Fig. 2a. As the classification results (Fig. 14a and b) of
the 15th original shot gather and its corresponding modified gather
(Fig. 14d) indicate, the classification result predicted by applying
the well-trained SegNet model to a shot gather with 21 consecutive
missing traces is similar to that of the original fully-sampled gather,
and the classification accuracy for the pair of gathers are 99.78% and
99.52%, respectively. As well, the picked FBs are suitable agreement
even in the locations of missing traces. Furthermore, we extract 64
features in the 17th convolution layer and 2 features in the 18th

convolution layer obtained by applying the new well-trained Seg-
Net to two given gathers of Fig. 14c and d, and implement careful
comparisons, as shown in Figs. 15 and 16. It can be observed that 64
deep-layer features automatically extracted from the gather with
21 consecutive missing traces are similar to the corresponding ones
thers with five distributions of missing traces (aee) generated from the 243rd original
ped original gather in (f) contains background, industrial electrical interference (red
und, the surface wave (blue rectangle), near-offset direct waves and far-offset refracted
ismic amplitude in (aee), where white vertical zones denote the positions of missing
e basically consistent each other and spatially continuous.



Fig. 8. Local zoomed plots of low-value probability zones of the middle 84th traces in Fig. 7aee. The characters 0% MT, 50% MT, Left MT, Right MT and Reg MT in legend represent five
cases of single-shot gathers with 0%, 50% randomly, only the left, only the right and regularly missing traces, as indicated in Fig. 6aee, respectively. There are only about three
continuous time samples with the classification probability less than 0.9, regardless of the distributions of missing traces. In addition, the differences among the minimum
probability for five cases are obviously not more than one time sample.

Fig. 9. The differences between the SegNet-based automatically picked FBs or the red lines of Fig. 6aee and the manually picked FBs versus the trace number. The errors of the
automatically picked FBs from 168 traces including the locations of missing traces even six consecutive missing traces are commonly less than four time samples, and the average
errors corresponding to five cases are 0.7411, 1.7589, 1.2054, 1.3185 and 1.6756 time samples, respectively.
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extracted from the original gather, even in the corresponding po-
sitions of consecutive missing traces. Moreover, as the depth of the
convolution layer increases from the 17th convolution layer to the
18th convolution layer, the features automatically extracted from
the gather with missing traces become closer to the corresponding
ones extracted from the original gather. It is noticeable that the new
well-trained SegNet model can extract features with obvious
boundaries between the shallow background part and the deep
signal-dominant part after both the 17th and 18th convolution
layers, even in the presence of 21 consecutive missing traces.
172
4. Discussion

We adopt a large number of preprocessed seismic common-shot
gathers as the network input, and use the corresponding pre-FBs
background and post-FBs data labels to supervise the network
output to gain a well-trained end-to-end encoder-decoder
extractor. The extractor can automatically extract features instead
of pre-computed ones. The automated extractor constructed by
stacking a series of artificial neurons enables FBs to be picked in a
manner analogous to how a humanwould pick them. Although the



Fig. 10. Comparisons among the classification results and first-break picking results of the gathers with five distributions of missing traces (aee) generated from the 2213rd original
common-shot gather (f) based on the new well-trained SegNet. The representatively cropped original common-shot gather in (f) contains background, industrial electrical
interference and asymmetric fluctuant direct waves, which are obviously different from the characteristics of Fig. 6f. The classification accuracy for five cases reaches 99%. Moreover,
the corresponding picked FBs are basically consistent and continuous along the space direction.
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Fig. 11. The single-channel probability maps corresponding to Fig. 10aee. The black represents low-value probability, and red lateral dashed lines represent the manually picked FBs
from the common-shot gather of Fig. 10f. It can be seen that the manually picked FBs are located in or near low-value zones of all probability maps.

Fig. 12. Local zoomed plots of low-value probability zones of the middle 84th traces in Fig. 11aee. There are about four continuous time samples with the classification probability
less than 0.9. In addition, the differences among the minimum probability for five cases are from 0 to 5 time samples. In contrast to Fig. 8, there exists relatively large uncertainty of
low-value probability zones.
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Fig. 13. The differences between the automatically picked FBs (or red lines of Fig. 10aee) and the manually picked FBs versus the trace number. The errors of the automatically
picked FBs from 168 traces including the locations of missing traces are commonly less than 4 samples, and the average errors corresponding to five cases are 1.1429, 1.5536, 0.9345,
1.6548 and 1.7083 samples, respectively.
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well-trained automated extractor is built at the cost of learning big
data, it is easy to prepare abundant seismic shot gathers and the
corresponding labels by segmenting FBs, which can be picked
manually. Nevertheless, it is important to learn representative and
diverse shot gathers especially including those with different dis-
tributions of missing traces. Under the premise that the basic
condition is met, our well-trained fully-convolutional SegNet con-
sisting of an end-to-end encoder-decoder feature extractor and a
following pixel-wise classifier adapts to automatically pick FBs of
various unseen shot gathers fast even acquired in different geom-
etries, such as different trace intervals, different distributions of
receivers, or different number of receivers.

We choose the datawithin the same source type of explosives in
our examples in order to focus on investigating the effectiveness of
SegNet-based automated first-break picking directly from shot
gathers with sparsely distributed traces including randomly
missing traces, consecutively missing traces and regularly missing
traces. Furthermore, we attempt to account for the reason why our
presented SegNet-based model can classify waveform and pick FBs
in the locations of missing traces. It is also worth investigating that
simultaneously learning a large number of seismic data from
various sources, such as explosives, vibroseis or air gun may enable
the well-trained SegNet to cause a broader generalization.

The design of labels is not unimportant for learning one data-
driven waveform classifier and first-break picker. From the view-
point of balancing the number of different classes of labels, it
should be appropriate to label seismic data with one class on post-
FBs data and the other on pre-FBs background, which are just
segmented by FBs. The design of network architecture and the
performance of the network learning are dependent on the choice
of the input size. We choose various cropped 2D seismic data with
relatively large size of both time and space dimensions, which can
be roughly determined by balancing post-FBs signal-dominant
samples and pre-FBs background samples as well as the computer
memory. And we input them into the end-to-end SegNet archi-
tecture to implement pixel-wise classification. The SegNet archi-
tecture can be designed deeper and more flexibly to see more
adjacent information. It is useful for a deep SegNet to classify
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waveforms and pick FBs of shot gathers with consecutive missing
traces. However, the end-to-end SegNet architecture accompanied
by the cropped gather input with relatively large-size time-space
dimension requires more preprocessing steps, such as the removal
of some local noise (e.g., outliers or 50-Hz industrial electrical
interference). The space dimension of the input determines the
maximum space limitation that the network can see. The space size
of the reception field, which can be calculated by using the number
and size of pooling layers and convolution layers, determines the
real space range that the network can see. The larger the reception
field, the more spatiotemporal information the network can cap-
ture. Besides directly learning spatiotemporal amplitude informa-
tion, some other attributes extracted from seismic data can be
considered as the input independently or simultaneously to learn
other well-trained models for classifying waveform and further
picking FBs. Furthermore, the ensemble learning for first-break
picking is also worth investigating.

We should consider the distribution of missing traces to design
the number of pooling layers, especially for the number of
consecutive missing traces. In contrast to convolution layers, the
use of more pooling layers can increase the receptive field more
rapidly and can help see a larger range of waveform, so more local
statistics can be utilized to perform waveform classification and
first-break picking. Moreover, more pooling layers along with
convolution layers can achieve more translation invariance, which
is useful for effectively classifying translational, rotational and
deformed spatiotemporal waveform and further picking FBs.
However, the usage of more pooling layers may blur some details
related to FBs. It may be onemain reasonwhy there is the low-value
probability of a certain width near the FB in each trace of the one-
channel probability map, which is derived by the SegNet-based
two-channel probability output map. This paper adopts only 2D
pooling and 2D convolution filters to gradually include as much
spatiotemporal statistics of neighborhood as possible in the input
preprocessed common-shot gathers. However, it can be readily
extended to a higher dimension to utilize more information. For
instance, 2D pooling and 2D convolutional filters can be directly
replaced by 3D or higher dimensional those to implement



Fig. 14. Comparisons between the classification results (aeb) of the 15th original common-shot gather (c) and its corresponding modified gather (d) involving 21 consecutive
missing traces based on the new well-trained SegNet. The original cropped gather in (c) contains weak background, weak industrial electrical interference, the relatively weak post-
FBs reflection area (red rectangle), the relatively weak residual surface wave (blue rectangle), near-offset direct waves and far-offset refracted waves. The pixel-wise classification of
the shot gather with 21 consecutive missing traces is similar to that of the original gather without missing traces, and the picked FBs are also consistent even in the locations of
missing traces.
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waveform classification and first-break picking in multiple shots
and multiple domains or by increasing a frequency or scale
dimension.

We do not impose any constraint of some common-sense factors
related to spatio-temporal relationship of FBs on learning SegNet,
such as small time delays between adjacent traces and time in-
crease with offset distance, but the picked FBs can visually meet
these factors, as illustrated in our examples. It suggests that the
proposed well-trained 25-layer SegNet model has the ability to
learn these common-sense factors from various seismic gathers
with the corresponding labels. In turn, whether some common-
sense factors or some experience of interpreters can be consid-
ered as a constraint or a guide to integrate into the process of
176
network learning andwhat are its roles in classifying waveform and
picking FBs is also worth studying.

We derive a single-channel probability map by taking the
maximum of each binary probability in the output two-channel
normalized probability map. For inputting any unseen shot
gather, the resulting single-channel probability curve at each trace
including the locations of missing traces is one impulse-like func-
tion, where there are the low-value probability of a certain width
near FBs. The locations of the minimum values within the low-
value probability zone can be interpreted as FBs, which corre-
spond to the locations of the segmentation lines interpreted by
directly using the output two-channel normalized probability map.
There are properties for the single-channel probability map that



Fig. 15. Comparisons between 64 features (aeb) in the 17th convolution layer automatically extracted by applying the new well-trained 25-layer SegNet to two given gathers of
Fig. 14c and d, as well as the histogram of the absolute difference between b and a. Although there are differences between the corresponding features near the missing traces, these
corresponding features appear similar. Furthermore, there are obvious boundaries between the shallow background part and the deep signal-dominant part in each extracted
feature even in the presence of 21 consecutive missing traces.

Fig. 16. Comparisons between 2 features (aeb) in the 18th (or final) convolution layer automatically extracted by applying the new well-trained 25-layer SegNet to two given
gathers of Fig. 14c and d, as well as the histogram of their absolute difference between b and a. There are relatively weak differences between the corresponding features near the
missing traces. In addition, there are clear boundaries between the shallow background part and the deep signal-dominant part in all extracted features.
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continuous small-value probability always appears near FBs, and
the minimum probability values are related to the locations of FBs.
It can probably be inferred that the smaller the minimum proba-
bility value in the derived single-channel probability map, and the
wider the range of-low-probability values, the more uncertain the
first-break picking. This may be adopted or further quantified as an
additional quality-control factor to evaluate the performance of the
already-trained network model from a statistical point of view, and
in turn to optimize the network architecture. Furthermore, some
continuously low-value probability in the derived single-channel
probability map indicates one time range for picking FBs at least.
It may provide a new way to combine the SegNet-based first-break
picker with a certain traditional picker.

5. Conclusions

We present a SegNet-based waveform classification and first-
break picking method. The method can pick FBs from shot
gathers with sparsely distributed traces or missing traces directly.
At the cost of learning various shot gathers with randomly missing
traces, our well-trained fully-convolutional SegNet model can
automatically extract spatio-temporal features and classify seismic
waveform at the same time. Due to the learning of samples with
missing traces and usage of several stacked pooling layers and
convolution layers, the well-trained 25-layer SegNet model can
adapt to automatically pick FBs of various unseen shot gathers ac-
quired in different geometries, even when the proportion of
randomly missing traces reaches 50%, 21 traces are missing
consecutively, or traces are missing regularly. As our examples
show, even when the proportion of randomly or regularly missing
traces of each gather in the testing set reaches up to 50%, the
classification accuracy of 2273 gathers is almost over 97%, and the
average error between the SegNet-based automatically picked FBs
and the manually picked ones is about two time samples. Although
we do not impose any constraint of some common-sense factors
related to spatio-temporal relationship of FBs on learning SegNet,
FBs including at the locations of missing traces can be picked with
good lateral continuities. Our work can be readily extended to
simultaneous multi-shot or multi-domain learning and first-break
picking, 3D amplitude learning and first-break picking by
increasing a frequency or scale dimension, as well as simultaneous
multiple-attribute learning and first-break picking, which are also
our future work.
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