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a b s t r a c t

Deep learning has achieved great success in a variety of research fields and industrial applications.
However, when applied to seismic inversion, the shortage of labeled data severely influences the per-
formance of deep learning-based methods. In order to tackle this problem, we propose a novel seismic
impedance inversion method based on a cycle-consistent generative adversarial network (Cycle-GAN).
The proposed Cycle-GAN model includes two generative subnets and two discriminative subnets. Three
kinds of loss, including cycle-consistent loss, adversarial loss, and estimation loss, are adopted to guide
the training process. Benefit from the proposed structure, the information contained in unlabeled data
can be extracted, and adversarial learning further guarantees that the prediction results share similar
distributions with the real data. Moreover, a neural network visualization method is adopted to show
that the proposed CNN model can learn more distinguishable features than the conventional CNN model.
The robustness experiments on synthetic data sets show that the proposed method can achieve better
performances than other methods in most cases. And the blind-well experiments on real seismic profiles
show that the predicted impedance curve of the proposed method maintains a better correlation with
the true impedance curve.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Seismic impedance inversion is an effective method used for
stratigraphic interpretation and reservoir prediction, which can
help engineers analyze the spatial structure and physical properties
of underground strata. Over the last 50 years, a variety of researches
have been conducted to solve the seismic inversion problem. We
can divide them into three kinds of methods: model-based
methods, data-based methods, and learning-based methods.
Model-based methods assume that the relationship between
seismic data and inversion targets obeys some deterministic model
such as the Robinson seismic convolution model (RSCM). It is the
earliest way to solve the inversion problem and is now widely
Intelligence (THUAI), Beijing,
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adopted in the seismic exploration industry. Recursive inversion
(Lindseth, 1979) and trace integration (Ferguson and Margrave,
1996) compute impedance directly from the predicted reflection
coefficients. Generalized linear inversion (GLI) (Cooke and
Schneider, 1983) and constrained sparse spike inversion (CSSI)
(Sacchi, 1997) iteratively improve the inversion model according to
the reconstruction error between the calculated seismic data and
the recorded seismic data. However, the recorded seismic data have
limited frequency bandwidth and the inversion target has broad
bandwidth, leading to the inversion problem underdetermined. To
avoid the influence of inaccurate initial models, some data-based
methods are proposed, such as well-logging constrained methods
(Carron, 1989), sparsity constrained method (Yuan et al., 2015), and
geostatistical inversion methods (Gouveia and Scales, 1998).
Another famous data-based model is the artificial neural network
(Lu et al., 1996) based method. By supposing that there exists a
nonlinear mapping between seismic data and the inversion target,
ANN is proposed to model the inversion process without defining a
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Abbreviation

D The data set of the observed near-well seismic data
(labeled data set)

D* The data set of the observed seismic data (unlabeled
data set)

d A sample from data set D
d* A sample from data set D*

Z The data set of acoustic impedance
z A sample from data set Z
ZH The data set of the high frequency part ofZ
zH A sample from data set ZH
ZL The data set of the low frequency part of Z
zL A sample from data set ZL
Z*L The data set of the estimated low frequency part of

impedance for unlabeled seismic data D*

z*L A sample from data set Z*L
WB The weights of backward-CNN model
WF The weights of forward-CNN model
WD1 The weights of discriminator D1
WD2 The weights of discriminator D2
a Initial learning rate

Nbatch Batch size
Niter
all The number of training iterations

Niter
g The iteration number of generators

Niter
d The iteration number of discriminators

l1 The balance parameter for cycle-consistency loss
l2 The balance parameter for estimation loss
c The number of feature maps
n The input and output size of CNN model
L The number of encoding layers
fc The fully connected layer
ei The ith encoding layer
di The ith decoding layer
keij The convolution kernel of thejth feature map at layer

ei
kdi
j The convolution kernel of thejth feature map at layer

di
Wfc

i The weights of theith fully connected layer

bfci The bias of the ith fully connected layer
ri The receptive field size of layer ei
Ri The receptive field of layer ei
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specific model which may introduce modeling errors. Recently,
Deep learning (LeCun et al., 2015) has led to groundbreaking ad-
vancements in many fields such as image classification, image
segmentation, and machine translation. Compared to other
methods, the convolutional neural network (CNN) contains deeper
layers and more sophisticated structures, which leads to stronger
abilities of feature extraction and structure representation. The
development of deep learning algorithms helps to improve the
performance of data-driven seismic inversionmethods by adopting
convolutional neural networks. Das et al. (2018, 2019) propose a 1D
CNN to predict high-resolution impedance data from seismic data
and conduct robustness experiments on synthetic data sets. Wu
et al. (2018) and Huang et al. (2018) propose to improve FWI
based on CNN. Some more complex network structures such as
Generative adversarial network (GAN) (Mosser et al., 2018; Li and
Luo, 2019), recurrent neural network (RNN) (Richardson, 2018),
Unet (a special fully convolutional neural network) (Xu et al., 2019;
Wang et al., 2020) and long short-term memory (LSTM) (Guo et al.,
2019; Sun et al., 2019; Alfarraj et al., 2019) are also adopted for
seismic inversion. Besides, due to the sophisticated structure of
CNN, the trained CNN models are always hard to interpret and it
causes difficulty in measuring the performance of CNN on new data
sets. To address this problem, Bayesian deep learning-based
inversion methods (Choi et al., 2020; Luo et al., 2020) are pro-
posed to estimate the uncertainty of inversion results and evaluate
the effectiveness of CNN models on new data sets.

As a data-driven algorithm, the practical application of CNN is
limited by the number of labeled samples. In order to enhance the
performance of CNN when the number of tag datasets is limited,
data augmentation (Ding et al., 2017; Jia et al., 2017) and semi-
supervised learning (Chen et al., 2018; Chen et al., 2019; Xu et al.,
2019) have also been proposed. In the actual seismic exploration
process, the stratigraphic physical parameters are usually obtained
by drilling. Due to the high cost of drilling and hard acquisition of
well-logging parameters, the number of labeled samples that can
be used for inversion is small. The application of CNN in seismic
inversion is limited by the insufficient number of well-logging
samples. Therefore, it is necessary to improve the generalization
ability of CNNwhen only a few numbers of labeled training data are
available.
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This paper is an extension and improvement of Wang et al.
(2019b). In this paper, we address the problem of seismic imped-
ance inversion when the number of labeled samples is small and
propose a novel inversion method based on a 1D cycle-consistent
generative adversarial network (Cycle-GAN). The proposed 1D
Cycle-GAN contains two 1D generative subnets and two 1D
discriminative subnets. The generative subnets are used to model
the seismic forward and inversion process and they are reversed for
each other. The discriminative subnets can extract the distribution
of the true data sets and constrain that the distributions of the
generated data are identical to the distributions of the true data.
And the experimental results on synthetic data show that the
Cycle-GAN based inversion algorithm obtains better performance
than other CNN based algorithms. The experiments on real seismic
data also obtain promising inversion results. Besides, we adopt a
neural network visualization method (Erhan et al., 2009;
Mordvintsev et al., 2015; Wang et al., 2019a) to interpret the
learned features in the trained CNN model and illustrate that the
proposed Cycle-GAN model can learn more distinguishable fea-
tures than conventional CNN model. The main contribution of this
paper can be summarized as follows:

(1) We propose a novel seismic impedance inversion method
based on a 1D cycle-consistent generative adversarial
network.

(2) The robustness of the proposed method under different
Signal-to-Noise Ratios (SNRs), numbers of labeled data, and
cut-off frequencies of the estimated low-frequency imped-
ances are studied. And different types of inversion methods
are compared.

(3) We adopt a neural network visualization method to visualize
the learned features in the trained CNN model and compare
the visualized features of Cycle-GAN with the conventional
open-loop CNN model.

The rest of the paper is organized as follows: First, we review the
recent researchworks related to our paper. Second, we describe the
proposed Cycle-GAN-based inversion method, the training pro-
cedure, and the adopted neural network visualization method in
detail. Third, the experimental setups and results on both synthetic
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and real data sets are demonstrated and other deep learning-based
inversion methods are compared. Last, we draw conclusions based
on the conducted experiments.

2. Related works

2.1. Convolutional neural network

Due to the powerful feature extraction capability of Convolu-
tional Neural Networks (CNNs), it has been widely applied in many
research fields and achieved superior performances (LeCun et al.,
2015). CNN is usually composed of a feature extraction stage and a
task-specific stage. The feature extraction stage is designed to
extract features from the input data, and it usually contains stacked
convolutional layers. The convolutional layers convolve the local
regions of the input images with filter kernels and then are fol-
lowed by non-linear activation layers to generate the output fea-
tures. The adopted activation functions are essential for acquiring
nonlinear expressions of the input signals and enhancing the rep-
resentation ability. The task-specific stage differs with different
types of tasks. For the classification tasks, the task-specific stage is
usually composed of several fully-connected layers with Sigmoid or
Softmax functions. And for the regression tasks, it usually contains
convolutional layers with Tanh activation functions. The parame-
ters of CNNs are optimized based on the defined loss functions and
the backpropagation algorithms. More details of CNNs can be found
in LeCun's work (LeCun et al., 2015).

2.2. CNN-based seismic inversion

CNNs have been widely adopted in seismic inversion. Das et al.
(2018, 2019) propose an effective synthetic data generatingmethod
based on geostatistical simulation and train a simple two-layer CNN
model on the generated data sets which share statistically similar
facies proportions, rock-physics relations, and source wavelet
properties with the true well-logging data. Benefit from the geo-
statistical simulation method, enough labeled data can be gener-
ated to train the CNN model and it partially resolves the small
sample size problem. Alfarraj et al. (2019) and Wang et al. (2020)
both adopt a semi-supervised learning framework for seismic
impedance inversion. They propose to simultaneously model the
seismic forward process and the inversion process based on CNN,
thus the forward CNNmodel can serve as a geophysical constrain to
the inversion CNN model and the solution space can be reduced.
Similarly, a recentwork by Sun et al. (2020) trains a hybrid network,
which contains a theory-guided wave propagation network to
regularize the inversion CNNmodel, for pre-stack seismic inversion
and can effectively reduce the degree of freedomwithin the neural
network. In this paper, we propose a Cycle-GAN-based inversion
method. Compared to the previous works (Alfarraj et al., 2019;
Wang et al., 2020), we further adopt two discriminators to
constrain the distribution consistency between the generated data
and the true data.

2.3. Generative adversarial network

Generative adversarial network (GAN) (Goodfellow et al., 2014)
includes a generative model and a discriminative model. By
imposing an adversarial loss function, the generative model can
learn to generate fake data as similar as the real data while the
discriminativemodel tries to distinguish between the fake data and
the real data. The loss function of GAN adopts a two-player mini-
max game strategy. It has been proven that the minimax game
reaches its optimal when the discriminator is unable to distinguish
between fake data and real data, and the generator can generate
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fake data sharing the same distribution as the real data (Goodfellow
et al., 2014). Since the proposal of GAN, a series of variants has been
proposed to adapt different applications, such as cGAN (Mirza et al.,
2014), DCGAN (Radford et al., 2015), InfoGAN (Chen et al., 2016),
WGAN (Arjovsky et al., 2017) and Cycle-GAN (Zhu et al., 2017; Yi
et al., 2017; Luo et al., 2017). Among them, Cycle-GAN has done a
great job in unpaired image translation tasks. It contains two
generative neural networks and two discriminative networks. The
former is used to translate images between domain X to domain Y
and the latter is used to constrain distribution consistency in the
two domains. Compared with GAN, Cycle-GAN includes a new kind
of loss function named cycle-consistency loss to ensure that the
input image can be reconstructed after processed by the two
generative networks. For the seismic inversion problem, the well-
logging data can be obtained as labeled data. Therefore, we
modify the loss function of Cycle-GAN to make it suitable for semi-
supervised learning.
3. Methodology

In this section, we first introduce the proposed Cycle-GAN
structure for seismic impedance inversion, the adopted genera-
tive CNN models, and the discriminative CNN models. Then the
designed loss functions are described in detail. Later, we summarize
the training procedure. And finally, the adopted neural network
visualization method is introduced.
3.1. Network structures

The adopted Cycle-GAN structure for seismic impedance inver-
sion is depicted in Fig.1. Similar to the cycle-GAN structure in image
translation (Zhu et al., 2017; Yi et al., 2017; Luo et al., 2017), the
adopted Cycle-GAN model contains two signal domains: seismic
domain and impedance domain. The seismic domain includes the
seismic data and the impedance domain includes the acoustic
impedance data. The main target of Cycle-GAN is to implement the
translation between the seismic domain and the impedance
domain. Two generative subnets and two discriminative subnets
are used in the Cycle-GANmodel. As shown in Fig. 1, the generative
subnets are denoted as forward-CNN and backward-CNN, the
discriminative subnets are denoted as D1 and D2. From the
perspective of geophysics, the forward-CNN models the seismic
forward process, which computes seismic data from impedance
data: z/d, and the backward-CNN models the seismic inversion
process, which maps seismic data to the high-frequency part of
impedance data: d/zH . Notice that in order to ease the inversion
task and better control the inversion results, the low-frequency
part of impedance data zL is provided by the traditional interpo-
lation method (Wang et al., 2020). Specifically, the low-frequency
part of near-well traces are computed from well-logging data,
and the low-frequency data between near-well traces are inter-
polated along seismic events. The forward process and inversion
process are reversed for each other, thus during the training, the
forward-CNN serves as a good regularization term for backward-
CNN. According to the theory of GAN (Goodfellow et al., 2014),
the discriminative network D1 is adopted to constrain the distri-
bution consistency between the predicted impedance data and the
true impedance data, the discriminator D2 is used to constrain the
consistency between the predicted seismic data and the true
seismic data.

The adopted neural network structures of generative subnets
and discriminative subnets are illustrated in Fig. 2 and Fig. 3. As it
shows in Fig. 2, a 1D U-net structure (Ronneberger et al., 2015;
Wang et al., 2020) is adopted for both the forward-CNN model and



Fig. 1. The architecture of Cycle-GAN.

Fig. 2. The neural network structure of generative subnets.

Fig. 3. The neural network structure of discriminative subnets.
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backward-CNNmodel. The input size and output size are both set to
be n� 1. The 1D U-net structure includes an encoding process and a
decoding process. The encoding layers are denoted as ei; i ¼ 1; 2; ,
,,; L, where L represents the number of encoding layers. The white
arrow in Fig. 2 represents the convolution operation:

e1 ¼ ke1j *Input; j ¼ 1; 2; ,,,; c (1)

where ke1j denotes the convolution kernel of the jth feature map at

layer e1, c denotes the number of feature maps. The size of the
convolution kernel is set to 3 and the stride of convolution is set to
2. Therefore, the output size of layer e1 is n

2� c. The red arrow in
Fig. 2 represents the “ReLUþconvþBN” operation:

ei ¼ BN
�
keij *ReLUðei�1Þ

�
; j ¼ 1; 2; ,,,; 2i�1c; i ¼ 2; ,,,; L

(2)

where keij represents the convolution kernel of the jth feature map

at layer ei, the number of feature maps at layer ei is set to 2i�1c,
BNð ,Þ represents the batch normalization operation. Correspond-
ingly, the decoding layers are denoted as di; i ¼ 1; 2; ,,,; L. The
yellow arrow in Fig. 2 represents the “ReLUþresizeþconvþBN”
operation:

di ¼BN
�
kdi
j *resizeðReLUðtÞ:Þ

�
; j¼1; 2; ,,,; 2L�i�1c; i¼1; ,,,; L;

t¼
�
eL; if i¼1
concatðdi�1;eLþ1�iÞ; if i>1

(3)

where kdi
j denotes the convolution kernel of the jth feature map at

layer di, the number of feature maps at layer di is set to 2L�i�1c,
resizeð ,Þ is the up-sampling operation and concatð ,Þ implements
the skip connections to merge multi-scale information. The output
of the generative subnets is obtained as follows:

Output¼ tanh
�
ko *ReLUðdLÞ

�
(4)

where ko denotes the convolution kernel of the output layer. For the
forward-CNN model, the input is acoustic impedance z and the
output target is seismic data d. For the backward-CNN model, the
input is seismic data d and the output is the high-frequency part of
impedance zH . By adding the predicted zH with zL, the absolute
impedance can be obtained.

The structure of discriminative subnets is shown in Fig. 3. We
adopt a 1D neural network structure similar to AlexNet (Krizhevsky
et al., 2012). It contains an encoding process similar to the gener-
ative subnets, whose encoding process is implemented by equation
(1) and (2), and followed by fully connected layers. The computa-
tion of the two fully connected layers can be written as follows:

fc¼ReLU
�
Wfc

1 � FlattenðeLÞþ bfc1
�

(5)

Output¼ Sigmoid
�
Wfc

2 � fcþ bfc2
�

(6)

where Wfc
i denotes the weights of fully connected layer i, bfci de-

notes the bias, Flattenð ,Þ is the function that reshapes the input
data into a vector, Sigmoidð ,Þ is the non-linear activation function.
The output size is set to 1. For discriminator D1, the input is the
predicted impedance or the real impedance. For discriminator D2,
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the input is the predicted seismic data or the real seismic data. The
two generative subnets and two discriminative subnets are con-
structed according to the structure in Fig. 1.
3.2. Loss functions

The originally proposed Cycle-GAN (Zhu et al., 2017; Yi et al.,
2017; Luo et al., 2017) structure is used to tackle unpaired image
translation problems and it mainly includes two kinds of losses:
cycle-consistent loss and adversarial loss. For the seismic inversion
problem, the well-logging data can provide labeled data for
training. Therefore, the proposed Cycle-GAN-based impedance
inversion method is actually under the semi-supervised learning
framework. A new kind of loss, named estimation loss, is adopted to
constrain the prediction consistency on the near-well traces.

In this paper, we denote the labeled seismic data set as D and its
corresponding target impedance as Z, whose number is small. The
unlabeled seismic data set is denoted as D*. As displayed in Fig. 1,
the cycle-consistency loss is used to constrain that the forward-
CNN and backward-CNN are reversed for each other. It can be
calculated both on labeled data and unlabeled data:

Lcycle1ðWB;WFÞ ¼
��d* � fWF

�
fWF

ðd*Þ þ Z*L
���2

2þ
��d

� fWF

�
fWF

ðdÞ þ ZL
���2

2

(7)

Lcycle2ðWB;WFÞ ¼
��zH � fWB

�
fWF

ðzH þ zLÞ
���2

2 (8)

where fWB
ð ,Þ denotes the computation of backward-CNN with

weights WB, fWF
ð ,Þ denotes the computation of forward-CNN with

weights WF , d2D represents the labeled seismic data, d*2D*

represents the unlabeled seismic data, zH2ZH represents the high-
frequency part of the impedance data, zL2ZL represents the low-
frequency part of the impedance data, z*L2Z*L represents the esti-
mated low-frequency part for the unlabeled seismic data. From the
above equation, we can see that the information contained in un-
labeled data can be extracted during the training process.

The estimation loss is calculated based on the predicted results
and the labeled targets and it can be written as:

Lest1ðWFÞ ¼
��d� fWF

ðzH þ zLÞ
��2
2 (9)

Lest2ðWBÞ ¼
��zH � fWB

ðdÞ��22 (10)

The estimation loss is used to constrain the convergence on
labeled data sets.

The adversarial loss encourages the generative subnets to
generate fake data similar to real data and encourages the
discriminative subnets to distinguish between the generated fake
data and real data. The adversarial game obtains its optimum so-
lutionwhen the distribution of the generated data is identical to the
distribution of the true data and the discriminators cannot distin-
guish between the generated data and the real data (Goodfellow
et al., 2014). The adversarial loss can be written as:

min
WB

max
WD1

LD1 ¼ log fWD1
ðzHÞ þ log

�
1� fWD1

�
fWB

ðdÞ � �

þ log
�
1� fWD1

�
fWB

ðd*Þ � � (11)



Table 1
Cycle-GAN training procedure.

Require: seismic data sets D, D* , impedance data sets ZH , ZL , Z*L , forward-CNN
model with parameters WF , backward-CNN with parameters WB , discriminator
D1 with parameters WD1, discriminator D2 with parameters WD2, batch size
Nbatch, the number of training iterationsNiter

all , the iteration number of generators

Niter
g , the iteration number of discriminators Niter

d , balance parameters l1, l2,
initial learning rate a.

1: Randomly initialize parameters WF , WB , WD1, WD2

2: for Niter
all steps do

3: repeat

4: for Niter
g steps do

5:
Randomly sample data

n
dðiÞ

oNbatch=2

i¼1
4D,

n
zðiÞH

oNbatch=2

i¼1
4ZH ,n

zðiÞL
oNbatch=2

i¼1
4ZL , fd*ðiÞgNbatch=2

i¼1 4D* , fz*ðiÞL gNbatch=2

i¼1 4Z*L

6: Update WF and WB according to (13) (14)

7: end for

8: for Niter
d steps do

9:
Randomly sample data

n
dðiÞ

oNbatch=2

i¼1
4D,

n
zðiÞH

oNbatch=2

i¼1
4ZH ,n

zðiÞL
oNbatch=2

i¼1
4ZL ,

n
d*ðiÞ

oNbatch=2

i¼1
4D* ,

n
z*ðiÞL

oNbatch=2

i¼1
4Z*L

10: Update WD1 and WD2 according to (11)(12)

11: end for

12: until all of the labeled data are sampled

13: end for

14: Output: Optimized parameters W*
F , W

*
B , W

*
D1, W

*
D2
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min
WF

max
WD2

LD2 ¼ log fWD2
ðdÞ þ log fWD2

ðd*Þ

þ log
�
1� fWD2

�
fWF

ðzH þ zLÞ
� � (12)

where fWD1
ð,Þ denotes the computation of discriminative subnet D1

with weights WD1, fWD2
ð,Þ denotes the computation of discrimi-

native subnet D2 with weights WD2. The adversarial loss LD1 can
guarantee that the inversion results of the unlabeled seismic data
share similar distributions with the true impedance data.

In summary, the overall loss functions for the two generative
subnets can be written as:

LðWFÞ ¼ l1

�
Lcycle1 þ Lcycle2

�
þ l2Lest1

� log
�
fWD2

�
fWF

ðzH þ zLÞ
� � (13)

LðWBÞ ¼ l1

�
Lcycle1 þ Lcycle2

�
þ l2Lest2

� log
�
fWD1

�
fWB

ðdÞ � �� log
�
fWD1

�
fWB

ðd*Þ � � (14)

where l1; l2 >0 are constant parameters to balance different loss
terms. And the overall loss functions for discriminators are shown
in equation (11) and (12).
3.3. Training procedure

The training procedure for Cycle-GAN is illustrated in Table 1.
Similar to the training process of GAN (Goodfellow et al., 2014), we
iteratively update the generative subnets and discriminative sub-
nets. The iteration number of generative subnets and
152
discriminative subnets are set to Niter
g , Niter

d , respectively. The

overall number of training iterations is Niter
all . Adam (Kingma and Ba,

2014) with initial learning rate a is adopted to update the weights
of subnets. After optimization, the trained Cycle-GAN is used to
obtain the inversion results.
3.4. Neural network visualization

In order to understand what kind of features the neural net-
works have learned by stacked convolutional layers, we adopt a
neural network visualization method to visualize the trained
inversion model (Erhan et al., 2009; Mordvintsev et al., 2015; Wang
et al., 2019a). One of the important features in CNNs is that a unit in
the feature maps is only related to a region of the input, and this
region is named as the “receptive field” of the unit (Luo et al., 2016).
Take the CNN model in Fig. 2 for example, when the size of the
convolution kernel is set to 3 and the stride is set to 2, the receptive
field size of each layer can be computed as follows:

ri ¼ 3ri�1 � 2ri�2; r0 ¼ 1; r�1 ¼ 0; i ¼ 1; 2; /; L (15)

where ri represents the receptive field size of layer ei. It can be seen
that as the layer goes deeper, the receptive field size grows. The goal
of neural network visualization is to find the special patterns in the
receptive field that trigger the unit on the feature maps of each
layer. Therefore, the target function of neural network visualization
can be designed as follows:

R*i ¼ argmax
Ri

hW*
B
ðRiÞ; i ¼ 1; 2; ,,,; L (16)

where W*
B denotes the optimized parameters of backward-CNN, Ri

is defined as the receptive field of a specific unit on layer ei and
hW*

B
ðRiÞ computes the activation value of the unit. We adopt a

gradient ascent algorithm to solve the above maximum optimiza-
tion problem:

Rtþ1
i )Rti þ h

vhW*
B

�
Rti
�

vRti
(17)

where h represents the learning rate. However, the visualization
results of deeper layers are severely affected by checkerboard ar-
tifacts (Odena et al., 2016). In order to mitigate these artifacts, we
initialize the gradient ascent method by selecting samples from the
training data sets D and D*:

R0i ¼ argmax
Ri

hW*
B
ðRiÞ

s:t: Ri4f4ðDÞ;4ðD*Þg (18)

where 4ð ,Þ represents the cropping operation. To deal with the
above problem, we repeatedly select samples from data sets and
choose the kind of patterns that maximize the target function. After
the optimization of (18) and (16), the obtained receptive field
pattern R*i can be used to interpret the unit on the feature map of
layer ei.
4. Results

In this section, we describe the parameter settings of our
method, demonstrate the inversion results, and compare them
with other methods on both synthetic data sets and real data sets.
Moreover, we conduct robustness experiments on the influences of



Fig. 4. The synthetic profile. (a) The synthetic impedance profile. (b) The synthetic seismic profile. (c) The low frequency impedance profile.

Table 2
Training parameter settings.

Niter
all

Nbatch Niter
g Niter

d
a l1 l2

Cycle-GAN-0 3000 4 6 4 1� 10�4 200 0
Cycle-GAN 200 200

Table 3
Parameter settings of generative subnets and discriminative subnets.

L n c

backward-CNN 5 256 128
forward-CNN 3 256 128
D1 and D2 5 256 64
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noise, the numbers of labeled samples, and the cut-off frequencies
of zL. Also, the neural network visualization results are displayed
and compared.

4.1. Synthetic data examples

A 2D synthetic profile, shown in Fig. 4, is adopted to examine our
method. Fig. 4a displays the synthetic impedance profile, the traces
located at CDP 75, 225, 375, 525 are regarded as labeled traces Z
and the rest traces are unlabeled traces. Fig. 4b displays the syn-
thetic seismic profile, which is generated from Fig. 4a by convolving
with a 20 Hz Ricker wavelet, the 4 traces at CDP 75, 225, 375, 525
are labeled traces D and the rest traces are unlabeled traces D*.
Fig. 4c displays the low-frequency impedance profile whose cut-off
Fig. 5. The loss and log MSE curve during the training. (a) The loss curve of Cycle-GAN. (b)
(Red curve: Cycle-GAN, blue curve: Open-loop CNN). It can be seen that the testing error o
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frequency is 5.3 Hz, the 4 traces at CDP 75, 225, 375, 525 are labeled
traces ZL and the rest traces are unlabeled traces Z*L .

Table 2 illustrates the training parameter settings, including the
setting of total training epochs Niter

all , the training batch size Nbatch,

the iteration number of generators Niter
g , the iteration number of

discriminators Niter
d , the initial learning rate a and the weighting

parameters l1, l2. We give two parameter setting strategies in
Table 2, where “Cycle-GAN-0” represents the parameter settings of
the originally proposed Cycle-GAN (Zhu et al., 2017; Yi et al., 2017;
Luo et al., 2017) and “Cycle-GAN” represents the parameter settings
of our proposed Cycle-GAN. Furthermore, we refer to “Cycle-GAN-
Refine” as firstly adopting “Cycle-GAN-0” to obtain an initial
inversion model and then fine-tuning it with “Cycle-GAN”. In the
experiments, we find that Cycle-GAN-Refine tends to get better
inversion results than other methods.

The parameter settings of generative subnets and discriminative
subnets are shown in Table 3, where L denotes the number of
encoding layers, n denotes the input and output size, c denotes the
number of feature maps at layer e1. Notice that parameter L of
backward-CNN is set to 5 while L of forward-CNN is set to 3, it is
because that the seismic forward process is based on a simple
convolution model and is much easier to model than the seismic
inversion process. The loss curves of Cycle-GAN during training are
displayed in Fig. 5a, from which we can see that the loss values
decrease as the epoch increases, and after 500 epochs, the decrease
of loss values slows down.

We compare our method with model-based inversion (Russell
et al., 1991) and other deep learning-based inversion methods,
The log MSE curves of the predicted impedance on unlabeled data sets during training
f Cycle-GAN decreases faster than those of Open-loop CNN.



Table 4
Comparison of different methods based on the average MSE of 5 repeated experiments. The optimal result is highlighted
with and the suboptimal result is highlighted with bold font.

Fig. 6. Box plot of the MSE value in the 5 repeated experiments shown in Table 4.
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including Semi-CRNN (Alfarraj et al., 2019), LSTM, Open-loop CNN,
and Closed-loop CNN (Wang et al., 2020), where LSTM and Open-
loop CNN adopts the conventional CNN training strategy that
Fig. 7. The 2D inversion results of different methods. The top row displays the inversion resu
displays the inversion results of Closed-loop CNN, Cycle-GAN-0, Cycle-GAN and Cycle-GAN
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only use one single deep learning model to learn the inversion
process based on the loss function in (10), the inversion CNNmodel
of Open-loop CNN is the same as the one used in our Cycle-GAN
model. We repeat the experiments 5 times under different initial-
izationweight parameters. The averageMean square error (MSE) of
the inversion results are illustrated in Table 4 and the box plots of
MSE in the 5 repeated experiments are displayed in Fig. 6. It can be
seen that Cycle-GAN-Refine obtains the lowest average MSE and
Cycle-GAN obtains the sub-lowest averageMSE. The deep learning-
based inversion methods achieve better inversion results than the
traditional model-based inversion method. Cycle-GAN-0 is actually
trained on unpaired data sets, thus the inversion error of Cycle-
GAN-0 is higher than other methods. From Fig. 6, we can see that
the inversion errors of Closed-loop CNN and Cycle-GAN are quite
close, but Cycle-GAN-Refine always tends to get better inversion
results than other methods. Furthermore, we compare the testing
errors of Open-loop CNN and Cycle-GAN during the training pro-
cess. As it is shown in Fig. 5b, the testing error of Cycle-GAN de-
creases faster than Open-loop CNN, it can be inferred that benefit
from the semi-supervised learning scheme and the constraints of
lts of model-based inversion, Semi-CRNN, LSTM, and Open-loop CNN. The bottom row
-Refine.



Fig. 8. The inversion error maps of different methods. The top row displays the error maps of model-based inversion, Semi-CRNN, LSTM, and Open-loop CNN. The bottom row
displays the error maps of Closed-loop CNN, Cycle-GAN-0, Cycle-GAN and Cycle-GAN-Refine.

Fig. 9. The inversion results of different methods at CDP 75, 225, 375, 525, 50, 150, 300, and 400. The red lines represent the true impedance, the magenta, blue, green, and black
lines represent the inversion results of model-based inversion, Semi-CRNN, Cycle-GAN-0 and Cycle-GAN-Refine.
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discriminators, Cycle-GAN can learn reasonable inversion models
faster than Open-loop CNN.

Figs. 7e9 display inversion results of the above methods. The
top rows in Figs. 7 and 8 show the inversion results of model-based
inversion, Semi-CRNN, LSTM, and Open-loop CNN. And the bottom
rows in Figs. 7 and 8 show the inversion results of Closed-loop CNN,
Cycle-GAN-0, Cycle-GAN, and Cycle-GAN-Refine. As marked by the
black circles in Fig. 7, there are some discontinuities along seismic
events in the inversion results of Semi-CRNN, LSTM, and Open-loop
CNN, and there are some blurs in the inversion results of model-
based inversion, Closed-loop CNN, and Cycle-GAN. The inversion
profile of Cycle-GAN-Refine is clearer and more continuous along
seismic events. Besides, it can be seen from the error maps in Fig. 8
that Cycle-GAN-Refine obtains lower inversion errors than other
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methods. Fig. 9 shows the predicted impedance sequences of
different methods at 4 labeled traces (CDP 75, 225, 375, 525) and 4
unlabeled traces (CDP 50, 150, 300, 400). For labeled traces, the
inversion results of Semi-CRNN and Cycle-GAN-Refine correlate
well with the true impedance, while the predicted impedance se-
quences of model-based inversion have lower resolution, and those
of Cycle-GAN-0 show some misfits with the true impedance
sequence. For unlabeled traces, the misfitting between the inver-
sion results and the true impedance increases. However, the pre-
dicted sequences of Cycle-GAN-Refine correlate better with the
true impedance than other methods.

Moreover, we further reconstruct the seismic profile based on
the predicted impedance profile. If the inverted impedance profile
is correct and the forward model is reliable, the reconstructed



Fig. 10. The reconstructed seismic data and corresponding error maps of different methods. The top row displays the reconstructed seismic data of Semi-CRNN, Closed-loop CNN,
Cycle-GAN-0, Cycle-GAN and Cycle-GAN-Refine. The bottom row displays the corresponding error maps.

Table 5
Comparison under different numbers of labeled traces. The optimal results are highlighted with and the
suboptimal results are highlighted with bold font.
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seismic profile should consist well with the synthetic seismic
profile. We compare the reconstruction results of Semi-CRNN,
Closed-loop CNN, Cycle-GAN-0, Cycle-GAN, and Cycle-GAN-
Refine, the comparison results are illustrated in Table 4 and
Fig.10. From Table 4, we can see that Cycle-GAN-Refine achieves the
lowest reconstruction errors. And similar conclusions can be drawn
from Fig. 10. The lower reconstruction errors of our methods indi-
cate that the predicted impedance profile of our method is more
reliable than other methods.
Fig. 11. Comparisons of MSE under different settings. (a) The MSE curves of different metho
values of the input seismic data. (c) The MSE curve under different cut-off frequencies of Z
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4.2. Robustness experiments

In order to examine the robustness of our method, we conduct
robustness experiments on synthetic data sets and compare our
method with Open-loop CNN, Closed-loop CNN, and Cycle-GAN-0.
Table 5 and Fig.11a illustrate the comparison results under different
numbers of labeled traces. The optimal results are highlighted with
the bold red font in Table 5 and the suboptimal results are high-
lighted with bold font. As the number of labeled traces increases,
ds under different numbers of labeled traces. (b) The MSE curves under different SNR

L .



Table 6
Comparison under different SNR values of the input seismic data. The optimal results are highlighted with

and the suboptimal results are highlighted with bold font.

Table 7
Comparison under different cut-off frequencies of ZL. The optimal results are highlighted with and the
suboptimal results are highlighted with bold font.
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the inversion errors of Open-loop CNN, Closed-loop CNN, Cycle-
GAN, and Cycle-GAN-Refine tend to decrease. Because that Cycle-
GAN-0 is trained under the unsupervised scheme, the number of
labeled traces has no obvious correlations with the inversion per-
formance of Cycle-GAN-0. It can be seen from Table 5 and Fig. 11a
that Cycle-GAN-Refine obtains better inversion results than other
methods except that when the number of labeled traces equals 50,
the inversion error of Cycle-GAN is lower than Cycle-GAN-Refine.
And when the number of labeled traces is larger than 2, the per-
formances of Closed-loop CNN and Cycle-GAN are similar. However,
the performance of Cycle-GAN gets worse when the number of
labeled traces becomes smaller. We can conclude that Cycle-GAN is
not robust enough in the case of small numbers of labeled traces
and Cycle-GAN-Refine shows better robustness under different
numbers of labeled traces.

Table 6 and Fig. 11b show the comparison results under different
Fig. 12. The visualization features of different encoding layers. From left to right are the vi
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Signal-to-Noise Ratios (SNRs) of the input seismic data. Random
Gaussian noise with different variances is added to the input
seismic data to obtain different levels of SNRs. From Table 6 and
Fig. 11b, we can see that when the SNR value is higher than 10 dB,
the inversion accuracy of Cycle-GAN-Refine and Cycle-GAN is
higher than other methods, which means the trained Cycle-GAN
model is robust when the input seismic data contains little noise.
But when the SNR value is low, Open-loop CNN obtains better
inversion results than other methods, and the performance of
Cycle-GAN and Cycle-GAN-Refine drops significantly. Therefore, if
Cycle-GAN and Cycle-GAN-Refine are applied to noisy seismic data,
noise attenuation methods are first required to enhance the quality
of the seismic data.

Table 7 and Fig. 11c display the comparison results under
different cut-off frequencies of ZL. With the increasing of cut-off
frequency, the inversion errors of different methods decrease. The
sualization results of the first 128 features in the layer e1; e3; e4 and e5, respectively.



Fig. 13. The correlation matrices of visualized features. (a) and (b) are the correlation matrices of Cycle-GAN and Open-loop CNN at encoding layer e3. (c) and (d) are the correlation
matrices of Cycle-GAN and Open-loop CNN at encoding layer e4.

Fig. 14. The histograms of correlation matrices. (a) The histogram of the encoding layer e3. (b) The histogram of the encoding layer e4. The blue bars display the histogram of Cycle-
GAN and the red bars display the histogram of Open-Loop CNN.

Table 8
The average correlation coefficients of the visualized features on different encoding
layers.

Layer Open-loop CNN Cycle-GAN

e1 0.6744 0.6360
e2 0.6337 0.6139
e3 0.5671 0.5187
e4 0.4337 0.4059
e5 0.3313 0.3135

Y.-Q. Wang, Q. Wang, W.-K. Lu et al. Petroleum Science 19 (2022) 147e161
inversion accuracy of Cycle-GAN and Closed-loop CNN is quite close
under different cut-off frequencies, and the performance of Cycle-
GAN-Refine is better than other methods. According to the slop of
the MSE curves in Fig. 11c, it can be concluded that Cycle-GAN-
Refine shows higher robustness than other methods under
different cut-off frequencies of ZL.
4.3. Neural network visualization results

Based on the neural network visualization methods introduced
in 3.4, we demonstrate the visualization results of the backward-
CNN in Cycle-GAN and compare it with Open-loop CNN in this
section. According to equation (17), the receptive field sizes of
encoding layers e1; e2; e3; e4; e5 can be computed as 3, 7,15, 31, 62.
And according to the parameter setting in Table 3, the feature map
numbers of e1; e2; e3; e4; e5 are 128, 256, 512, 1024, 2048,
respectively. Fig. 12 displays the first 128 visualization features of
layer e1; e3; e4 and e5, fromwhich we can see that as the layer goes
deeper, the learned features become more complicated and
structured.
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Moreover, we compare the visualization results of Cycle-GAN
and Open-loop CNN in Fig. 13, Fig. 14, and Table 8. The correlation
coefficients of the visualized features at each layer are computed. A
larger correlation coefficient indicates the higher similarity be-
tween the two visualized features. Fig. 13a and b shows the cor-
relation matrices of the visualized features at layer e3. Comparing
Fig. 13a and b, it can be seen that Open-loop CNN has more large
correlation coefficients than Cycle-GAN, and a similar situation can
be found in Fig. 13c and d. We further draw the histograms of the
correlation matrices in Fig. 14, from the distribution of correlation
coefficients we can see that there are more coefficients close to 1 in
the Open-loop histograms than in the Cycle-GAN histograms.
Table 8 illustrates the average correlation coefficient values of each
encoding layer. The average coefficient values of Cycle-GAN is lower
than Open-loop CNN. From the above visualization results, it can be
concluded that the learned features of Cycle-GAN are more abun-
dant and diverse than the features of Open-loop CNN. The
employment of unlabeled data during the training and the use of
discriminators can enrich the features learned by CNN.

4.4. Real data examples

In this section, we adopt a 2D real seismic profile to testify our
method. The real seismic profile is shown in Fig. 15a. The traces
located at CDP 38, 314, 489, and 603 are near-well traces whose
target impedance can be computed fromwell-logging data. And the
rest traces are regarded as unlabeled traces. In order to evaluate our
inversion results quantitatively, we further consider the trace
located at CDP 489 as blind well. The model parameter settings and
the training parameter settings are the same as synthetic data ex-
periments shown in Tables 3 and 4.



Fig. 15. The inversion results of the real 2D seismic profile. Top row displays the predicted impedance of model-based inversion, Semi-CRNN and Open-loop CNN. Bottom row
displays the predicted impedance of Closed-loop CNN, Cycle-GAN and Cycle-GAN-Refine.

Fig. 16. The predicted impedance of different methods at CDP 38, 314, 489, 603. The red lines represent the true impedance, the magenta, blue, green, and black lines represent the
inversion results of model-based inversion, Semi-CRNN, Closed-loop CNN and Cycle-GAN-Refine.
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We compare our method with model-based inversion (Russell
et al., 1991), Semi-CRNN (Alfarraj et al., 2019), Open-loop CNN,
and Closed-loop CNN (Wang et al., 2020). The predicted impedance
profiles are displayed in Fig. 15. Fig. 16 compares the predicted
impedance of different methods on labeled near-well traces (CDP
38, 314, 603) and unlabeled blind-well trace (CDP 489). As marked
by the black circles in Fig. 15, compared with other methods, the
inversion results of Cycle-GAN-Refine are more continuous and
clearer. We can further see from Fig. 16 that, on labeled near-well
traces, the inversion results of Semi-CRNN, Closed-loop CNN and
Cycle-GAN-Refine are much more accurate than the results of
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model-based inversion. And on blind well, the predicted imped-
ance curve of Cycle-GAN-Refine correlates better with the true
impedance curve, especially between 0.15s and 0.2s. In addition,
Table 9 illustrates the comparison of correlation coefficients and
MSE on blind well, from which we can see that the predicted
impedance of Cycle-GAN-Refine obtains the optimal correlation
with the true impedance and Cycle-GAN achieves the suboptimal
inversion results. Furthermore, in Fig. 17, we investigate the
reconstructed seismic profile calculated from the predicted
impedance of Cycle-GAN-Refine. It can be seen that the recon-
structed seismic profile is well consistent with the real seismic



Fig. 17. The reconstructed seismic data of Cycle-GAN-Refine. (a) The real seismic profile. (b) The reconstructed seismic profile of Cycle-GAN-Refine. (c) The corresponding error map
of (b).

Table 9
The prediction correlation coefficients andMSE of differentmethods on blind well. The optimal result is highlighted
with and the suboptimal result is highlighted with bold font.
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profile and the reconstructed error shown in Fig. 17c is quite low.
Therefore, we can conclude that our method can be effectively
applied to real seismic profiles.
5. Conclusion

In this article, we propose a seismic impedance inversion
method based on a cycle-consistent generative adversarial network
(Cycle-GAN). The proposed Cycle-GAN model adopts two genera-
tive subnets to model the seismic forward and inversion process
and adopts two discriminative subnets to guarantee the distribu-
tion consistency between the prediction results and the target data
sets. Unlabeled data is used during the training procedure to
compensate for the shortage of labeled data. Robustness experi-
ments are conducted on synthetic data sets, including the influence
of different SNR values, the number of labeled traces, and the cut-
off frequencies of low-frequency impedance. The experimental
results show that the proposed method achieves better perfor-
mance than other deep learning-based methods in most cases. And
we adopt a neural network visualization method to interpret the
learned features of Cycle-GAN and compare themwith the features
of Open-loop CNN, the visualization results illustrate that Cycle-
GAN can learn more distinguishable and diverse features than
Open-loop CNN. Finally, the blind-well experiment on real seismic
profile shows that the inversion results obtained by the proposed
method are better correlatedwith thewell-logging impedance data
than other methods.
160
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