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a b s t r a c t

Natural gas hydrate (NGH) has attracted much attention as a new alternative energy globally. However,
evaluations of global NGH resources in the past few decades have casted a decreasing trend, where the
estimate as of today is less than one ten-thousandth of the estimate forty years ago. The NGH researches
in China started relatively late, but achievements have been made in the South China Sea (SCS) in the
past two decades. Thirty-five studies had been carried out to evaluate NGH resource, and results showed
a flat trend, ranging from 60 to 90 billion tons of oil equivalent, which was 2e3 times of the evaluation
results of technical recoverable oil and gas resources in the SCS. The big difference is that the previous 35
group of NGH resource evaluations for the SCS only refers to the prospective gas resource with low grade
level and high uncertainty, which cannot be used to guide exploration or researches on development
strategies. Based on the analogy with the genetic mechanism of conventional oil and gas resources, this
study adopts the newly proposed genetic method and geological analogy method to evaluate the NGH
resource. Results show that the conventional oil and gas resources are 346.29 � 108 t, the volume of NGH
and free dynamic field are 25.19 � 104 km3 and (2.05e2.48) � 106 km3, and the total amount of in-situ
NGH resources in the SCS is about (4.47e6.02) � 1012 m3. It is considered that the resource of hydrate
should not exceed that of conventional oil and gas, so it is 30 times lower than the previous estimate.
This study provides a more reliable geological basis for further NGH exploration and development.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Natural gas hydrate (NGH) is an ice-like crystalline compound
formed in low temperature and high pressures, which is mainly
composed of natural gas and hydrogen (Sloan and Koh, 2007).
Recently, the oil and gas exploration and development shift from
the conventional to the unconventional (Wang et al. 2020, 2021a,
Wang et al., 2021c). Due to high energy density and low pollution to
the environment, NGH are considered an ideal new resource after
the shale oil revolution (Kerr, 2004; Cui et al., 2018; Hu et al., 2018;
2021a, 2021b). Researches on NGH have attracted much attention
@cup.edu.cn (X.-Q. Pang).
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all over the world, especially in developed countries and countries
lacking of conventional oil and gas resources (Zhang et al., 2021). At
present, NGH researches are still at the early stage, such as the trial
production. As of 2019, 19 voyages of NGH exploration have been
carried out globally (Kerr, 2004), and NGH samples have been
successfully extracted from northern Alaska, Japan Trough, and
South China Sea (SCS) (Wang et al., 2017). These samples and
preliminary data help scientists around the world to conduct more
in-depth studies of NGH resources. NGH resource evaluation is
essential as it provides scientific guidance to the actual exploration
and reduces development risks. Meanwhile, studying the amount
and distribution of hydrate resources is also helpful for countries to
formulate appropriate energy policies. Global researches on NGH
resource evaluation began in 1973, with two main evaluation
methods, including volumetric method and particle organic carbon
deposition rate method. The evaluation results up to date have
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Fig. 1. Diagrams of hydrocarbon generation, retention and expulsion in vertical section and their relationship with hydrocarbon dynamic fields in petroliferous basins (Pang et al.,
2021b). (a) Relationship among hydrocarbon generation, retention and expulsion of source rocks and the buoyancy-driven hydrocarbon accumulations depth in six representative
basins of China; (b) The unified model of three dynamic boundaries and three dynamic fields controlling hydrocarbon accumulation. The blue area refers to F-HDF, controlling
conventional oil and gas resources. The yellow zone refers to confined hydrocarbon dynamic field (C-HDF), controlling tight oil and gas resources. The gray area refers to bound
hydrocarbon dynamic field (B1-HDF) controlling shale oil and gas resources.
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decreased by 10,000 times since 1973 and are continuing to decline
(Pang et al., 2021a; Pang et al., 2021c; Shaibu et al., 2021), indicating
that with the improved understanding of hydrate, the NGH
resource evaluation is gradually getting closer to the true value.

China started to evaluate NGH resources in the SCS since 2001,
and by 2020, 35 estimates were obtained (Xu et al., 2021), which
show three features. First, the estimates are all in the range of
(60e90) � 1012 m3 with no substantial change in the past 20 years,
which is significantly different from the dramatic changes of the
global NGH resource estimates. Second, the evaluation methods
used in the SCS are mainly classical volumetric method and
comprehensive analysis method, which are greatly affected by
human factors. The volumetric method, utilized in 10 of the 35
evaluations, is based on the distribution characteristics of NGH
resources (Xu et al., 2021), and the resource was obtained by
multiplying parameters area, thickness, porosity, and hydrate
saturation of NGH reservoirs, and volumetric coefficient of NGH at
surface condition. This calculation is easy once all the geological
parameter values are determined but the determination of these
values can be very subjective and erroneous when the exploration
level is low. The comprehensive analysis method, utilized in 23 of
the 35 evaluations, is mainly based on the results obtained by
volumetric method (Xu et al., 2021), where the original results are
calibrated in the analysis with corrections and additional consid-
erations, meaning more easily affected by human factors. The ge-
netic method was used in only two studies, which evaluates the
NGH resource according to hydrocarbon source. The advantage is
that fewer parameters involved compared to the volumetric
method, but the disadvantage is that it is hard to know exactly how
much hydrate can be formed in the source rock and then accu-
mulated into the reservoir. Besides, the genetic method does not
take the contribution of deep degraded gas into account and ig-
nores the mass balance relationship between NGH and other re-
sources. Third, the 35 estimates are all relatively optimistic and is
49
2e3 times of the total recoverable NGH resources in the world
(Boswell, 2009; Boswell and Collett, 2011). A detailed review of
previous evaluations shows that, the 35 estimates of the NGH in
SCS are only prospective gas resource, not the enriched or technical
recoverable resource, so they cannot be used to guide NGH explo-
ration and development or strategic researches in the SCS (Xu et al.,
2021).

In order to overcome the shortcomings of the above methods
and obtain more objective estimate of NGH resource in the SCS, this
study reevaluated the in-situ NGH resources using a newly pro-
posed genetic analogy method based on the mass balance law and
the evaluated conventional oil and gas resources (Pang et al.,
2021a).

2. Methods

NGH has always been considered to have an inorganic origin (Di
et al., 2003). However, the carbon isotope content (d13C1) of
methane in 13 global NGH reservoirs was found to be less
than�30‰ (Pang et al., 2021a; Liang et al., 2021), indicating that all
the NGH are from the degradation of organic matter in sedimentary
basins. Biodegradation and deep thermal degradation provide 60%
and 40% of the hydrates respectively, this is similar to the propor-
tion of biogenic and thermal gas in oil and gas resources in petro-
liferous basins (Dai et al., 2017), indicating that NGH has the same
source as other natural gas resource. This indicates that the total
amount of NGH resources should not exceed the total amount of oil
and gas resources generated by sedimentary organic matter
(Fig. 1a). In addition, NGH is considered a special type of conven-
tional oil and gas resource, accumulated in the sandstone reservoirs
with high-porosity and high-permeability or the mudstone with
fractures driven by buoyancy (Zhang et al., 2017). Therefore, the
NGH resource amount is related to the amount of hydrocarbon
amount expelled from source rocks above the buoyancy-driven



Fig. 2. Major basin distribution in the SCS (modified from Zhang et al., 2013).
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Table 1
Sedimentary characteristics of main basins in South China Sea.

Basin Area, km2 Sedimentary thickness, m Water depth, m Sedimentary strata References

Taixinan Basin 5.40 3548.84 50e3000 Late Cretaceous - Quaternary Gong et al. (2012)
Pearl River Mouth Basin 26.70 3393.42 0e1500 Eocene -Quaternary Mi et al. (2019)
Qiongdongnan Basin 3.40 4195.99 0e2000 Eocene -Quaternary Zhang et al. (2015)
Zhongjiannan Basin 13.10 2139.07 50e4000 Eocene -Quaternary Liu et al. (2020)
Wanan Basin 4.00 7110.78 500e2000 Late Eocene - Quaternary Zhang et al. (2017)
Nanweixi Basin 4.80 2309.27 800e3600 Paleocene - Quaternary Xu et al. (2003)
Zengmu Basin 16.87 7275.93 40e1800 Paleocene - Quaternary Yao et al. (2008)
Beikang Basin 5.92 4612.73 100e1200 Paleocene - Quaternary Lei et al. (2017)
Brunei Sabah Basin 9.40 6731.71 300e2200 Eocene -Quaternary Liu et al. (2018)
Liyue Basin 5.50 2771.7 0e2000 Late Jurassic - Quaternary Sun et al. (2010)
Palawan Basin 4.68 2779.87 1815.38* Paleocene - Quaternary Zhang et al. (2013)
Bijianan Basin 4.20 1589.52 1800e4400 Eocene -Quaternary Gao and Bai (2002)
Shuangfeng Basin 3.70 1581.60 2000e3500 Eocene -Quaternary Zhang et al. (2020)

Note: Sedimentation thickness is average, data Straume et al., (2019); * is the average value.
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hydrocarbon accumulation depth (BHAD) (Pang et al., 2021b), and
should be less than it (Fig. 1a). The BHAD boundary and related
hydrocarbon dynamic field model were proposed by Pang et al.
(2020a,b) (Fig. 1b). The formation area above the BHAD is the free
hydrocarbon dynamic field (F-HDF), consisting of conventional oil
and gas reservoirs, reformed heavy oil and bitumen reservoirs, and
solid hydrates. In this field, the formation area dominated by
buoyancy for hydrocarbon migration and accumulation (Pang et al.,
2021b), therefore the NGH resource amount is also a part of the
total amount of oil and gas resources in the F-HDF. According to the
mass balance law, the NGH resource can be estimated through the
genetic analogy method by multiplying the volume ratio of the gas
hydrate stable zone (GHSZ) to F-HDF and conventional oil and gas
resources (Pang et al., 2021b) (Equations (1) and (2)).

QNGHzRNGH � Qcon (1)

RNGH ¼ VGHSZ

VFHDF
¼ ðAGHSZ � HGHSZÞ

�
ðAFHDF � HFHDFÞ (2)

where, QNGH is the NGH resource amount, 1012 m3. Qcon refers to the
total amount of conventional oil and gas resources, 1012 m3. RNGH is
the volume ratio of GHSZ in the F-HDF. VFHDF is the rock volume of
F-HDF, km3. VGHSZ is the rock volume of GHSZ, km3. AGHSZ is the area
of GHSZ, km2. HGHSZ is the thickness of the GHSZ, m. AFHDF is the
area of the F-HDF, km2. HFHDF is the thickness of the F-HDF, m.
3. NGH resource evaluation in the SCS

The SCS, with an area of about 350 � 104 km2, is one of the
largest marginal sea basins in theWestern Pacific Ocean. Located at
the junction of the Pacific plate and Indian plate, it is a typical
superimposed marginal sea basin. After a series of stretching and
compression movements, the SCS formed passive continental
margin and active continental margins with 38 large and medium-
sized sedimentary basins (Fig. 2), with an area of about
106 � 104 km2. There are 14 main sedimentary basins with an area
of 74 � 104 km2. These basins mainly developed at Paleogene to
Quaternary strata, with thicknesses of 1581.6 me7275.93 m and
water depths of less than 4400 m (Table 1). These strata contain
abundant sedimentary organic matter (Wu and Wang, 2018) and
provide sufficient gas source for NGH formation (Yu et al., 2014; Li
et al., 2021). Meanwhile, there are also many favorable geological
conditions for gas migration, such as the accretionary wedge
formed by the southward subduction of the ancient SCS and slump
51
bodies and faults (Zhang et al., 2013; Cai et al., 2020). These
geological bodies form a good transport system for NGH migration
and accumulation (Qiao et al., 2013).

3.1. GHSZ distribution

GHSZ refers to an area where NGH can reach phase equilibrium
and is confined by low temperature and high pressure that are
conducive to the NGH formation and distribution (Booth et al.,
1998). Wang et al. (2021) mapped the GHSZ in the SCS by study-
ing the balancemode of gas hydrate phase in 12major petroliferous
basins in the SCS and correcting the sedimentary thickness with
geothermal gradient (Fig. 3). The area of GHSZ in the SCS is
54.81 � 104 km2, accounting for 51.71% of the total area of the
sedimentary basins in the SCS and 18.27% of the entire area of the
SCS. The thickness of GHSZ varies between 10m and 800m, with an
average of 282.2 m. The rock volume in the GHSZ is
25.19 � 104 km3, accounting for 4.56% of the total rock volume in
the sedimentary basins.

3.2. Prediction of F-HDF for conventional oil and gas resource
formation

Pang et al. (2020, 2021b) proposed the concepts of BHAD and
hydrocarbon dynamic field. By combing lots of reservoir analyses
and a series of physical simulation experiments, Pang et al. (2020a,b)
found that the BHAD in petroliferous basins generally corresponds to
a sandstone reservoir with porosity of 10% ± 2%, permeability of 1
mD, and pore throat radius of 1 mm. In this study, reservoir porosity
and test data were used to determine the BHAD in Zhu-I Depression,
Pearl River Mouth Basin. Fig. 4 shows the correlation between
reservoir porosity and burial depth in Lufeng Sag, Zhu-I Depression,
in which the porosity of 10 ± 2% corresponds to a depth of
3400e4000 m (Fig. 4b), therefore the BHAD in the Zhu-I Depression
is determined as 3400e4000 m (Fig. 4a). Similarly, combined with
the thickness map of sedimentary strata in the SCS (Straume et al.,
2019), the thicknesses of the free dynamic fields in major basins
were obtained,with an average of 2000e2700m (Fig. 5). The volume
of sedimentary strata in the F-HDF of the SCS is 2.05e2.48� 106 km3.

3.3. Conventional oil and gas resource evaluation

Combined with the national oil and gas resource evaluation
results and previous studies on the resource evaluation of some
basins in the SCS, conventional oil and gas resource amount in the



Fig. 3. Thickness distribution of GHSZ in SCS (modified from Wang et al., 2021b).
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Fig. 4. F-HDF distribution in the SCS. (a) Distribution of the F-HDF and its relationship with the BHAD and distribution of conventional oil and gas resources in the Pearl River Mouth
Basin; (b) Correlation between reservoir porosity and burial depth. The BHAD corresponds to the depth of 3400e4000 m.
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SCS is 346.29 � 108 t, including conventional oil resource of
163.96 � 108 t and conventional natural gas resources of
182.33 � 1011 m3 (Table 2) (Ministry of Land and Resources, 2009;
Zuo et al., 2016; He et al., 2017; Zhang et al., 2017a, 2017b, 2017c;
Zhu et al., 2019).
3.4. NGH resource evaluation

According to the thickness distribution of the F-HDF in basins
and the GHSZ distribution map (Figs. 3 and 5), the flattening
thickness, which refers to the flattening of an irregular polyhedron
into a regular polyhedron of the same thickness for the conve-
nience of calculation, was obtained by using isoline area tradeoff
method, and then the VGHSZ and VF-HDF were obtained by combining
the area on the distribution maps. The volume ratios of GHSZ to F-
HDF and the NGH resources (QNGH) in all basins were obtained by
Equations (1) and (2) (Table 3). The average volumes of GHSZ and F-
HDF in basins in the SCS are 1.80 � 104 km3 and
(1.57e1.91) � 105 km3 respectively, and the total volumes are
2.35 � 105 km3 and (2.05e2.48) � 106 km3, respectively. The
average RNGH is 12.21%e16.34%. Applying this value to basins
without GHSZ and F-HDF data, the NGH resources of all the basins
are (4.47e6.02) � 1012 m3 (Fig. 6). Pang et al. (2021a) found that
RNGH values are generally below 10% in 29 groups of global NGH
resource evaluation results, whereas that of 7 basins in the SCS are
greater than 10%, including Zhongjiannan Basin, Wanan Basin,
Zengmu Basin, Beikang Basin, Nansha Trough Basin, Brunei Sabah
Basin, and Bijianan Basin. This indicates that the SCS is favorable for
NGH formation.

The estimate obtained in this study is 30 times smaller than that
of the previous 35 studies, which might due to two reasons. First,
the evaluation method utilized in this study is genetic analogy
method. The NGH resource is considered as a part of the conven-
tional oil and gas resources, so the NGH resource cannot exceed the
total amount of the conventional oil and gas resources in the SCS.
Second, the previous 35 evaluation results are all about prospective
gas resource. However, the in-situ conventional oil and gas
resource was utilized in this study and also considered the
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hydrocarbon expulsion, accumulation and enrichment in analogy,
therefore this NGH resource estimate is in-situ resources, repre-
senting a higher grade level resource than the previous results.

4. Discussion

Based on the genetic analogy method, this study adopts the
mass balance law and conventional oil and gas resource evaluation
results to calculate the in-situ NGH resources in the SCS, which
greatly improves the accuracy and credibility of the resource
evaluation results. However, the estimate is also affected by two
factors. First, the uncertainty mainly lies in the BHAD determina-
tion. As the BHAD in the Zhu-I Depression of the Pearl River Mouth
Basin was used to represent the BHAD in the SCS, it might lead to
some deviation due to individual differences among different ba-
sins. In the future, with more reservoirs data were obtained in
basins, the BHADs in different basins should be independently
determined to improve the accuracy of evaluation. Second, the
conventional oil and gas resource evaluation in this study did not
include the heavy oil and asphalt. By adding the heavy oil and
asphalt resource, the estimated NGH resources should be larger
than the current value. In addition, through physical simulation
experiments and numerical simulations, the recoverable factor of
NGH is 15%e70%, with an average of 30% (Boswell and Collett, 2011;
Merey and Sinayuc, 2016). Based on these values, the technical
recoverable resources of NGH in the SCS are (1.34e1.81) � 1012 m3.

5. Conclusions

This study utilized a new genetic analogy method to evaluate
the NGH resources in the SCS. (1) NGH is a special kind of con-
ventional oil and gas resources in F-HDF in petroliferous basins, so
the NGH resources in the SCS cannot exceed the total amount of
conventional oil and gas resources. (2) The NGH resource in FHDF is
directly proportional to the ratio of rock volume occupied by GHSZ
and FHDF, which is less than 10% on average globally and between
12% and 16% in SCS. (3) According to the analogy method and the
mass balance law, the in situ NGH resources in SCS are



Fig. 5. Prediction of the free dynamic field distribution for major basins in the SCS.
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Table 2
Comprehensive evaluation results of conventional oil and gas resources in major petroliferous basins in the South China Sea.

Basins Thickness of F-HDF, m Area of F-HDF, 104 km2 Oil resources, 108 t Gas resources, 108 m3 Oil and gas resources, 108 t

Qiongdongnan Basin 1270e1690 10.87 2.72 11142.31 13.86
Yinggehai Basin / / / 13067.98 13.07
Beibuwan Basin / / 7.34 / 7.34
Pearl River Mouth Basin 1267e1682 23.94 21.95 27,000 48.95
Taixinan Basin 1137e1743 7.67 1.85 2052.39 3.90
Liyue Basin 2011e2176 15.21 5.24 3427.01 8.66
Zengmu Basin 3400e4000 13.19 33.51 43130.61 76.64
Brunei Sabah Basin 636e719 7.73 21.63 3982.59 25.61
Nanweixi Basin 2145e2309 15.44 8.43 13,382 21.81
Beikang Basin 656e1871 6.73 13.82 14,855 28.68
Zhongjiannan Basin 2066e2139 17.62 19.06 7233.65 26.29
Wanan Basin 359e400 5.57 16.31 34.90 51.21
Palawan Basin 1832e2780 7.19 4.42 4073.99 8.49
Bijianan Basin 1590 9.78 4.17 2364.96 6.53
Other basins / / 3.51 1720.86 5.23
Total / 146.19 163.96 182330.35 346.29

Note: "/" is no data.

Table 3
Key parameters and evaluation results of NGH resources in the SCS.

Basins VGHSZ,

104 km3
VF-HDF,

104 km3
RNGH,
%

QCON,
108 t

QNGH,
1012 m3

Taixinan Basin 1.12 8.72e13.37 8e13 3.90 0.03e0.05
Peral River Mouth Basin 1.81 30.32e40.26 4e6 48.95 0.22e0.29
Qiongdongnan Basin 0.93 13.79e18.33 5e7 13.86 0.07e0.09
Zhongjiannan Basin 4.15 36.41e37.69 11 26.29 0.29e0.30
Wanan Basni 0.25 2.00e2.23 11e12 51.21 0.57e0.64
Nanweixi Basin 2.17 33.12e35.65 6e7 21.81 0.13e0.14
Zengmu Basin 0.91 4.48e5.27 17e20 76.64 1.33e1.56
Beikang Basin 2.11 4.42e12.59 17e48 28.68 0.48e1.37
Brunei Sabah Basin 1.68 4.91e5.55 30e34 25.61 0.78e0.88
Liyue Basin 3.10 30.57e33.09 9e10 8.66 0.08e0.09
Palawan Basin 1.21 13.17e19.98 6e9 8.49 0.05e0.08
Bijianan Basin 2.85 15.54 18 6.53 0.12
Other basins / / 12e16 25.64 0.31e0.41
Average 1.80 15.73e19.05 12e16 / /
Total 23.46 204.60e247.71 / 346.27 4.47e6.02

Note: "/" is no data.

Fig. 6. Evaluation results of NGH in place resources in main basins of the SCS. 1-Taixinan Basin; 2-Pearl River Mouth Basin, 3-Qiongdongnan Basin, 4-Zhongjiannan Basin, 5-Wanan
Basin, 6-Nanweixi Basin, 7-Zengmu Basin, 8-Beikang Basin, 9-Brunei Sabah Basin, 10-Liyue Basin, 11-Palawan Basin, 12-Bijianan Basin, 13-Other basins.
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(4.47e6.02) � 1012 m3, with total recoverable resources of
(1.34e1.81) � 1012 m3.
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