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a b s t r a c t

Buried natural gas pipelines are vulnerable to external corrosion because they are encased in a soil
environment for a long time. Identifying the causes of external corrosion and taking specific maintenance
measures is essential. In this work, a risk analysis and maintenance decision-making model for natural
gas pipelines with external corrosion is proposed based on a Bayesian network. A fault tree model is first
employed to identify the causes of external corrosion. The Bayesian network for risk analysis is deter-
mined accordingly. The maintenance strategies are then inserted into the Bayesian network to show a
reduction of the risk. The costs of maintenance strategies and the reduced risk after maintenance are
combined in an optimization function to build a decision-making model. Because of the limitations of
historical data, some of the parameters in the Bayesian network are obtained from a probabilistic esti-
mation model, which combines expert experience and fuzzy set theory. Finally, a case study is carried out
to verify the feasibility of the maintenance decision model. This indicates that the method proposed in
this work can be used to provide effective maintenance schemes for different pipeline external corrosion
scenarios and to reduce the possible losses caused by external corrosion.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Most natural gas transportation occurs through pipelines due to
their high efficiency, low cost, and inability to be easily affected by
the transportation environment (Cui et al., 2020; Wang et al., 2020;
Turkowski and Szudarek, 2019; Hao et al., 2019). The extension of
pipeline service life leads to a greatly increased probability of
pipeline accidents (Xing et al., 2020; Wang et al. 2017, 2020; Liu
et al., 2018; Lu et al., 2015; Badida et al., 2019; Guo et al., 2016).
Some characteristics of the soil, such as salinity, may have a nega-
tive effect on pipelines due to long-term contact. (Li et al., 2018;
Wang et al., 2015a). External corrosion has been determined to be
one of the main reasons for the failure of buried pipelines (Liu et al.,
2018; Li et al., 2018; Gadala et al., 2016). Once a pipeline fails,
disastrous consequences such as fires, explosions, and environ-
mental pollution can result (Cui et al., 2020; Zhou et al., 2020; Liu
et al., 2018). The timely maintenance of corroded pipelines is
important for preventing unnecessary losses (Bastian et al., 2019;
Liu et al., 2018). However, excessive maintenance may reduce the
y Elsevier B.V. on behalf of KeAi Co
efficiency of pipeline transportation. For this reason, risk-based
maintenance has been applied to provide a balance between
safety and efficiency (Li et al., 2017). In other words, maintenance
plans need to be optimized with a consideration of both the costs
and the failure risks of pipelines.

It is necessary to analyse the causes of buried pipeline external
corrosion and consider how to take targeted maintenance mea-
sures. Several studies have been conducted in the fields of pipeline
risk analysis in both qualitative and quantitative ways, especially
for the assessment of failure probability and the prediction of
corrosion rate (Wang et al., 2015b; Caleyo et al., 2015; Badida et al.,
2019; Lecchi, 2011; Guo et al., 2016; Vanaei et al., 2017; Valor et al.,
2013; Wang and Duan, 2019; Chen et al., 2020). For example,
Allahkaram et al. (2015) estimated the corrosion rate of pipelines
under the influence of stray currents. Shan et al. (2018) established
an assessment model of gas transmission pipeline failure proba-
bility based on historical failure-related data and modification
factors. The establishment of maintenance strategies can reduce
the probability of failure to some extent. Zakikhani et al. (2020)
proposed a maintenance planning framework for the external
corrosion of gas transmission pipelines through an availability-
centred reliability-based maintenance planning procedure. A
multilevel strategywas proposed for the maintenance optimization
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Table 1
Linguistic terms and their corresponding fuzzy numbers used to describe the like-
lihood of an event (Chen and Hwang, 1992).

Linguistic terms Probability description Trapezoidal fuzzy numbers

Very low <1% (0, 0, 0,0.2)
Low-Very low 1%e5% (0,0,0.1,0.3)
Low 5%e10% (0, 0.2, 0.2,0.4)
Fairy low 10%e33% (0.2, 0.35, 0.35,0.5)
Medium 33%e66% (0.3, 0.5, 0.5,0.7)
Fairy high 66%e90% (0.5, 0.65, 0.65,0.8)
High 90%e95% (0.6, 0.8, 0.8,1)
High-Very high 95%e99% (0.7,0.9,1,1)
Very high >99% (0.75,1, 1, 1)
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of pipeline systems subjected to external corrosion by XQ Liu et al.
(2018). At present, many studies have been conducted on pipeline
risk assessment and maintenance (Kimiya et al., 2020). How to
combine maintenance decisions and risk assessments to effectively
improve the safety of pipeline operation is necessary.

Pipeline risks change when different maintenance decisions are
made. This dynamic feature places a high demand on the risk
analysis method (Wu et al., 2017; Kabir et al., 2015). However,
conventional risk analysis methods like fault tree analysis and
event tree analysis (Wu et al., 2017; Naghavi-Konjin et al., 2020)
have limitations, such as the inability to analyse the relationship
between variables and the absence of specific probability expres-
sions of the events (Guo et al., 2020). Therefore, a risk analysis
method that can describe the relationship among variables with
uncertainty and multi-state issues is needed (Zhang et al., 2018;
Wang et al., 2017). Bayesian network (BN) are one of the most
effective theoretical models in the field of uncertain knowledge
expression and inference (Zhou et al., 2020). The main advantage of
a Bayesian network is that it can update the probability and act as a
special dynamic manifestation according to the different settings of
the evidence nodes (Li et al., 2020; Dahire et al., 2018; Wang et al.,
2017). This advantage can be applied in the external corrosion risk
assessment of pipelines with a consideration of pipeline mainte-
nance. During pipeline operation, specific parameters can be ob-
tained through detection or pipeline properties. Those parameters,
as well as the assumed maintenance decisions, can appear as evi-
dence nodes in a Bayesian network to update the predicted failure
probability.

To reduce the pipeline failure probability caused by external
corrosion with reasonable maintenance methods, a maintenance
decision model based on a Bayesian network is proposed in this
paper. Section 2 describes the framework and the methods
employed in this work. Section 3 and Section 4 introduce the risk
assessment model and maintenance decision model, respectively.
Section 5 illustrates the application of the model through a case
study. Section 6 offers conclusions.
Fig. 1. The framework of the
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2. Methodology

This section provides an overview of the proposedmethodology.
The framework is shown in Fig. 1. First, a fault tree model is
established to analyse the risk factors for buried natural gas pipe-
lines. Then, the Bayesian network is determined accordingly. Sec-
ond, a probability estimation model that combines expert
experience and fuzzy set theory is established to determine the
conditional probability tables (CPTs) and some parts of the prior
probability in the BN. Finally, the maintenance decision model
based on the BN is proposed.

2.1. Fault tree analysis

Fault tree (FT) is a deductive failure analysis method used to
analyse the unwanted state of a system from the result to the causes
(Gachlou et al., 2019; Badida et al., 2019; Yin et al., 2020). It is
mainly used in the fields of reliability engineering and safety en-
gineering to find the causes of accidents. In practical applications,
fault tree analysis is good at finding the weak part of a system.
However, a FT cannot express the uncertainty of an event accu-
rately. The probability of the events in a FT is expressed in Boolean
algebra with “AND” and “OR” gates. Its conditional probability has
only two values, 0 or 1. This is much different from a real situation.
For example, the occurrence of a stray current could enhance the
possibility of external corrosion but not definitely lead to the failure
proposed methodology.
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of a pipeline. In contrast, a Bayesian network has a flexible structure
and a better representation of the probability of events (Badida
et al., 2019; Villa et al., 2016).

2.2. Bayesian network

A Bayesian network, also known as a belief network, is a
directed acyclic graph model. It is comprised of nodes representing
stochastic variables and directed arcs symbolizing probabilistic
conditional dependencies among the variables (Khakzad et al.,
2011; Tien and Kiureghian, 2016). A Bayesian network is a causal
association model that has a strong ability to deal with un-
certainties. This was first proposed by Judea Pearl in 1985 and has
since become one of the main techniques for dealing with uncer-
tain information (Pearl, 1985). Usually, a BN consists of nodes,
directed edges and conditional probabilistic tables (CPTs) (Li et al.,
2020). The nodes, including parent nodes and child nodes, repre-
sent random variables. The directed edges show the dependencies
among the variables. The CPTs show the conditional probabilities
between the dependent variables and the parent nodes. (Khakzad
et al., 2013).

A joint probability distribution over a set of variables X¼ {X1, X2,
…, Xn} is shown as follows:

PðX1;X2; :::;XnÞ¼ P
n

i¼1
PðXijPaðXiÞÞ (1)
Fig. 2. Fault tre
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where Xi 2 X. Pa (Xi) is the parent set of the variable Xi (Li et al.,
2020).

Given new observations or evidence, the prior probability of the
variable can be updated. Then, the posterior probability of the
variable can be obtained as (Caleyo et al., 2015):

P
�
Xj
��Xi

�¼ P
�
Xi;Xj

�
PðXiÞ

¼ P
�
Xi
��Xj

�
,P

�
Xj
�

P
j
P
�
Xi
��Xj

�
P
�
Xj
� (2)
2.3. Probabilistic estimation model

For accurate failure probabilities that are difficult to obtain
through inadequate historical data, a probabilistic estimation
model combining experts’ judgement and fuzzy set theory can be
used as an alternative. There are many applications of fuzzy set
theory that deal with uncertainty and inaccuracy in expert judge-
ments in linguistic terms (Yazdi and Kabir, 2017). Trapezoidal fuzzy
numbers are adopted in this study to express the probability of
occurrence of an event (Li et al., 2019).

The membership function of a trapezoidal fuzzy number has the
following form:
e diagram.



Table 2
Basic events of FT.

Symbol Description Symbol Description

X1 pH value X10 Construction quality issues
X2 Resistivity X11 Service time of the pipe
X3 Soil moisture X12 Coating quality issues
X4 Redox potential X13 Insufficient inspection frequency
X5 Soil salinity X14 Improper selection of coating
X6 Soil texture X15 Line failure
X7 Free corrosion potential X16 Part failure
X8 Chloride content X17 Stray current
X9 Third party activities X18 Failure of stray current protective measures

Fig. 3. Bayesian network for buried pipeline external corrosion.
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mðxÞ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

0; x< a
x� a
b� a

; a � x � b

1; b � x � c

d� x
d� c

; c � x � d

0; x> d

(3)

Where A ¼ (a, b, c, d) is a group of trapezoidal fuzzy numbers.
In this paper, 9 linguistic terms are used to estimate the occur-

rence probability of events. Three experts are asked to describe the
probability of the basic events with “Very low, Low-Very Low, Low,
Fairy low, Medium, Fairy high, High, High-Very High, and Very
high”. Fuzzy set theory is applied to transform the description of
linguistic terms into fuzzy numbers, as shown in Table 1. Because
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the professional and education levels of experts are not exactly the
same, different experts are assigned weights expressed by u ¼ (u1,
u2, u3). The influencing factors of the weights are professional
position, education level, experience and age (Ramzali et al., 2015).
The fuzzy failure possibility of event i in state j can be calculated
with Eq. (4)

~Pij ¼
X3
l¼1

ul5Aij ¼
�
aij; bij; cij; dij

�
(4)

where Pð�Þij is the trapezoidal fuzzy probability of event i, Aij is the
expert's description of event i corresponding to a fuzzy array, and ul

is the weight of expert l, l ¼ 1,2,3. In general, the number of experts
should be at least 3 to reduce the subjectivity of judgment.

To obtain a representative probability value of the basic events,
the fuzzy numbers must be defuzzified. Based on obtaining the



Fig. 4. Bayesian network of soil corrosivity.

Table 3
Nodes illustration in the Bayesian network of soil corrosivity.

Node classification Bayesian nodes States of nodes

Leaf nodes Soil corrosivity strong/medium/weaker/weak
Root nodes Soil resistivity <20//20e50/>50, U$ m

Redox potential <100/100e200/200e400/>400, mV
Free corrosion potential <-550/-550~-450/-450~-300/>-300, mV
pH value <4.5/4.5e5.5/5.5e7.0/7.0e8.5/>8.5
Soil texture Sandy soil/loam/clay
Soil moisture �7/7e10/10e12/12e25/25e30/30e40/>40,%
Soil salinity �0.05/0.05e0.15/0.15e0.75/>0.75, %
Chloride content �0.005/0.005e0.01/0.01e0.05/>0.05, %

Table 4
Description of means of maintenance.

Repair parts Maintenance means

Coating Repair/Replace
Cathodic protection system Parts maintenance/Line maintenance
Stray current Direct drainage/Ground drainage
Severe external corrosion Replace the pipe
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trapezoidal fuzzy probability, the fuzzy possibility scores P* of the
node are calculated with the centre area method, as shown in Eq.
(5)

P* ¼

ð
mðxÞxdxð
mðxÞdx

¼

ðb

a

x� a
b� a

xdxþ
ðc

b

xdxþ
ðd

c

d� x
d� c

xdx

ðb

a

x� a
b� a

dxþ
ðc

b

dxþ
ðd

c

d� x
d� c

dx

¼ 1
3
ðdþ cÞ2 � dc� ðaþ bÞ2 þ ab

dþ c� a� b
(5)

Finally, the fuzzy probability scores are converted to the fuzzy
probability based on a function developed by Onisawa (1988), as
shown in Eq (6).

FP¼

8><
>:

1

10k
; P*s0

0; P* ¼ 0

;K ¼
��

1� P*

P*

��1
3

� 2:301 (6)
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where K is a constant and FP is the fuzzy probability of the event.
Table 1 shows the probability ranges and fuzzy numbers cor-

responding to different fuzzy terms for event likelihood. For the
prior probability that cannot be obtained according to the historical
data, as well as the CPTs that are not simply converted from the
logic gates, the probabilistic estimation model is an alternative.
2.4. Optimization function

Maintenance plays an important role in reducing the risk. The
main concept of the maintenance decision model is to analyse the
effect of maintenance strategies on reducing the failure probability.
At the same time, the cost of the maintenance method should also
be reasonable.

For pipeline external corrosion, the maintenance cost, inspec-
tion cost and expected failure loss are considered. The maintenance
decision is made based on the optimization of the total cost, which
can be calculated as:

R¼
Xn
i¼1

CRi þ
Xm
j¼1

CFjPFj þ
Xs
k¼1

CDkPDk (7)

where R is the total cost. CRi is the cost when choosing maintenance
method i. CFj is the loss of failure mode j, and PFj is the probability of
failure mode j after maintenance implementation. CDk is the cost of
the routing inspection, and PDk is the certain inspection frequency,
which is determined by DS evidence theory. m is the total number
of failuremodes, while s is the total number of inspection frequency
classifications.



Fig. 5. Maintenance decision model.

Table 5
Node illustration in the maintenance decision model.

Node classification Bayesian nodes States of nodes

Leaf nodes External corrosion Yes/no
Intermediate nodes Soil corrosion Yes/no

Failure of anti-corrosion measures Yes/no
Stray current Weak/medium/strong/no
Cathodic protection failure Yes/no
Coating failure Yes/no
Stray current corrosion Yes/no
Cathodic protection parts failure Yes/no
Cathodic protection lines failure Yes/no

Root nodes Third party activities Yes/no
Service time of the pipe <20/20e30/>30 (year)
Poor quality of coating Yes/no
Construction quality issues Yes/no
Improper selection of coating Yes/no
Inspection frequency no/once a day/once a week/once a month
Soil corrosivity Strong/medium/weaker/weak

Root nodes (maintenance nodes) Repair the coating Yes/no
Replace the coating Yes/no
Cathodic protection parts maintenance Yes/no
Cathodic protection lines maintenance Yes/no
Ground drainage
Direct drainage
Replace the pipe

Yes/no
Yes/no
Yes/no
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3. Hazard identification and risk assessment model

3.1. Fault tree diagram

In this part, a fault tree that takes external corrosion as the
target event is built to analyse the possible reasons for the external
corrosion. External corrosion can be categorized into two types: 1)
soil corrosion and 2) stray current corrosion (Cui et al., 2016). Either
of themwill lead to external corrosion of the pipeline. Direct causes
are further discussed for these two forms of corrosion, and 18 basic
1255
events leading to pipeline external corrosion are obtained. Fig. 2
shows the analysis process of hazard identification, and the basic
events are listed in Table 2.

Fig. 2 analyses the possible causes of external corrosion for
buried pipelines. However, “Yes” or “No” cannot represent the
actual states of some basic events of the fault tree. For example, the
nodes “inspection frequency” and “service time of the pipe” have
3e4 states. For this reason, the FT needs to be transferred into a BN
to solve those problems, especially for events with multiple states.



Table 6
Prior probability of root nodes.

Root nodes Prior probability

Poor quality of coating 2.2E-03
Construction quality issues 2.2E-03
Improper selection of coating 1.5E-05
Third party activities 0.009
Cathodic protection part failure 1E-04
Cathodic protection line failure 3E-03
Service time of the pipe, years <20 0.61

20e30 0.26
>30 0.13

Inspection frequency no 0.01
Once a day 0.9
Once a week 0.078
Once a month 0.012

Fig. 6. Marked observable nodes in the Bayesian network.

Table 7
The CPT of the node “External corrosion”.

Replace the pipe Yes No

Soil corrosion Yes No Yes No

Stray-current corrosion Yes No Yes No Yes No Yes No

External corrosion Yes 0 0 0 0 1 1 1 0
No 1 1 1 1 0 0 0 1
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3.2. External corrosion analysis with BN

All the basic events in the FT correspond to the root nodes in the
Bayesian network. According to the relationship of the events in the
FT, the nodes are connected in a Bayesian network with directional
edges. It should be noted that the directional direction of the edges
is consistent with the output direction of the logic gates in the FT.
The established FT in Fig. 2 is transformed into a Bayesian network,
1256
and the corresponding revisions are made. The revised structure of
the Bayesian network is shown in Fig. 3.

The nodes in this Bayesian network and their corresponding
states are described in detail in Section 4.2.

Soil corrosivity plays an important role in influencing factors of
the external corrosion of buried pipelines. Many factors influence
soil corrosivity, and the classification is complex. Therefore, soil
corrosivity was modelled separately in this study. According to GB/



Table 8
Part of CPT for “coating failure” node.

Precondition Parent nodes Expert judgement FP

C T P I S 1 2 3

Take the maintenance method of coating repair No Yes No No >30 FL M L-VL 9.27E-02
No Yes No No 20e30 V-VL M FL 8.15E-02
No Yes No No <20 FL L L 6.08E-03
No No No Yes >30 FL M L-VL 8.52E-02
No No No Yes 20e30 V-VL FL L 2.91E-02
No No No Yes <20 L FL V-VL 2.73E-03

Table 9
Soil parameter hypothesis.

Parameters Value Parameters Value

Soil resistivity, U$ m 32.6 Soil water content, % 26.2
Redox potential, mV 101 Soil salt content, % 0.06
Free corrosion potential, mV �323 Soil cl- content, % 0.007
Soil PH 9.2 Soil texture Sandy
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T 19,285e2014, there are 8 main factors affecting soil corrosivity.
Fig. 4 shows the Bayesian network of the soil corrosivity, which
includes the soil resistivity, redox potential, free corrosion poten-
tial, pH value, chloride content, soil salinity, soil moisture, and soil
texture. Table 3 exhibits the nodes and the states variables.

According to GB/T 19,285e2014, each grade of the above pa-
rameters was assigned a score. The sum of the scores of the 8 pa-
rameters can be divided into 4 grades presenting the soil
corrosivity. The CPT of soil corrosivity is determined by the sum of
the evaluation scores. The probability of soil corrosivity at different
levels can then be obtained from the BN mentioned in Fig. 4
accordingly.

4. Maintenance decision model

4.1. Determination of maintenance measures

To address the external corrosion of natural gas pipelines,
maintenance measures are divided into four parts: 1) maintenance
of coating; 2) maintenance of cathodic protection system; 3) stray
current; and 4) pipeline replacement. The corresponding mainte-
nance means for each part are shown in Table 4.

In the engineering practice, “direct drainage” and “ground
drainage” are more convenient and economical. Therefore, other
drainage modes were not considered in this study. All the repair
parts of the pipe are listed in Table 4. The external corrosion caused
by the different parts of the pipeline refers to different failure
scenarios. In the face of various maintenance methods, choosing
appropriate maintenance means in the face of different failure
scenarios is a problem that needs to be solved.

4.2. Establishment of maintenance decision model

A Bayesian network can flexibly delete and add nodes. Taking
advantage of this feature, maintenance strategies are considered
the parent nodes of pipeline failure causes and are inserted into the
BN in Fig. 3. The risk, or the pipeline failure probability, can then be
reassessed under the assumption that maintenance measures have
been conducted. A decision can be made according to the optimi-
zation function combining the reassessed risk and the costs, as
mentioned above in Eq. (7). For a given pipeline, the costs of specific
maintenance measures, failure loss and inspection frequency can
be obtained from historical experience and expert estimation.

Fig. 5 shows the maintenance decision model, which is based on
1257
the BN in Fig. 3, with the maintenance nodes added. The illustra-
tions of the nodes are listed in Table 5.

4.3. Model parameters

The prior probabilities and the CPTs are pre-set parameters in
the BN. In this work, the prior probabilities and the CPTs are ob-
tained by combining historical statistical data and expert
estimations.

The prior probability of some nodes can be obtained from sta-
tistics. For example, according to statistics, the probability of a pipe
being less than 20 years old is 0.61, and the probability that it is
between 20 and 30 years old is 0.26. The specific statistical results
are taken as the prior probabilities of the “service time of the pipe”
node. However, it is not practical to obtain all prior probability from
historical statistics because of the limitation of data access. The
probabilistic estimation model based on expert experience can be
an alternative.

Experts are asked to describe the probability of BN nodes using
linguistic terms. Based on the methods proposed in Section 2.3, the
fuzzy probability (FP) can be calculated as the prior probability of
root nodes. Table 6 lists the prior probability of each basic event.

It is particularly noted that maintenance strategies are observ-
able nodes in the BN. The states of the maintenance nodes can be
directly determined through observation. Therefore, no prior
probability is assigned to such nodes. Regarding another observable
node “inspection frequency”, the experts' judgement may differ
due to different statistical cycles and methods. DS evidence theory
is applied here to calculate the posterior probability distribution,
considering all expert judgements. The use of DS evidence theory in
Bayesian networks can be found in Ref (Hui et al., 2017). The
observable nodes are marked in a deeper colour in the Bayesian
network, as shown in Fig. 6.

The BN is mapped from the FT, but the logic gates in the FT
cannot be converted to the CPTs in the BN directly. In this paper, the
CPTs are determined with both logic gates and the probability
estimation model mentioned in Section 2.3. Logic gates represent
deterministic relationships among variables (Gachlou et al., 2019;
Badida et al., 2019; Yin et al., 2020; Yu et al., 2019). The external
corrosion node reflects the OR gate relationship. It's assumed that
when “replace the pipe” is “Yes”, external corrosion is eliminated. If
no maintenance measures are taken, either soil corrosion or stray
current corrosion occurs, the state of external corrosion is “Yes”.
Table 7 shows this relationship.

For the BN in Fig. 6, the CPTs of some nodes are complex. For
example, “coating failure” has 7 parent nodes, leading to the CPT of
192 combinations. It is difficult to ask experts to put such numerous
cases into linguistic terms. For the sake of simplification, some
assumptions are employed. It is assumed that replacement of the
coating leads to a coating failure probability of zero. When the
coating is not replaced, the coating failure risk is the sum of the
failure probabilities of each risk factor separately.

The part of the fuzzy probability of the “coating failure” node



Fig. 7. Initial condition of Bayesian network.
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after simplification is shown in Table 8, where “C” “T” “P” “I” and “S”
represent “construction quality issues”, “third party activities”,
“poor quality of coating”, “improper selection of coating”, and
“service time of the pipe”, respectively.
5. Case study

5.1. Scene description

For a 23-year-old buried natural gas pipeline, Table 9 shows the
1258
parameters of the soil to which the pipe is exposed. It was found
that the pipeline faces a medium strength stray current, and part of
the cathodic protection system fails to work. Third-party activity
was observed along the pipeline. Before the decision making, none
of the maintenance methods are taken. The corresponding condi-
tions are set as evidence nodes in the maintenance decision model
and are shown in deeper colour in Fig. 7. The inference of the BN
indicates that the pipeline has a 0.389% chance of external
corrosion.



Fig. 8. Bayesian network after taking maintenance measures.

Table 10
The cost setting.

Nodes States Failure probability Cost, million

Coating Repair 0e50% 0.01
0.03>50%

Replace e 0.30
Cathodic protection part Repair parts 0e50% 0.02

0.03>50%
Cathodic protection line Repair lines 0e50% 0.005

0.01>50%
Stray current Direct drainage e 0.02

Ground drainage e 0.03
Pipe system Replace the pipe e 2.0
Inspection frequency Once a day e 0.02

Once a week e 0.003
Once a month e 7E-04
no e 0
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5.2. Maintenance decision

Under the above conditions, a decision should be made on how
to maintain the pipeline. It is assumed that coating repair and
grounding drains are adopted, and parts of cathodic protection are
determined to be repaired. At this point, it can be observed that the
probability of external corrosion is reduced to 2.56E-08, as shown
in Fig. 8. According to the historical data and expert judgements,
the cost values of different repair parts and methods are deter-
mined in Table 10. The inspection costs and the failure losses are
also obtained in the same way. To simplify the calculation, all de-
scriptions are specific to a pipe segment.

Different combinations of maintenance means correspond to
different cost values. The loss amount of external corrosion is
1259
considered to be 80 million. If the pipe is replaced, the external
corrosion probability is reduced to zero, but the total cost is 2.018
million. In addition, a summary of all available means of mainte-
nance and the corresponding cost values are given in Table 11.

The variation in the risk of external corrosion and the costs
under the above four maintenance conditions are shown in Fig. 9.
The numbers 1e17 correspond to the 17 maintenance plans in
Table 11. According to the optimization function proposed in Sec-
tion 2.4, the maintenance methods of coating repair will optimize
the situation.

6. Conclusions

In this paper, a fault treemodel is first used to analyse the causes
of external corrosion in buried pipelines, including corrosion fac-
tors and anti-corrosion measures. A novel maintenance decision
model based on a Bayesian network is proposed accordingly to
analyse the maintenance cost and the effect of external corrosion
maintenance strategies on failure probability. Fuzzy set theory was
employed with domain expert knowledge to estimate the occur-
rence probabilities of the root events and the CPTs. Events with
observable or measurable states are set as evidence nodes to
represent the pipeline conditions and the implemented mainte-
nance measures. The effect of maintenance on failure reduction is
illustrated through a case study. It shows that the maintenance
decisionmodel is practicable for selecting the optimal maintenance
plan, as well as realizing the risk reassessment after the imple-
mentation of maintenance measures. It is verified that the method
proposed in this paper is feasible for decision making regarding the
maintenance of pipeline external corrosion, as well as other failure
scenarios, which will be studied in the future work.



Table 11
Maintenance means summary.

No For coating For cathodic protection For stray current External corrosion probability Failure Loss,
Million

Optimization result,
Million

1 Repaired No Direct drainage 2.44E-06 0.0002 0.0482
2 Repaired No Ground drainage 2.78E-06 0.0002 0.0582
3 Repaired No No 2.05E-05 0.0016 0.0296
4 Repaired Repair parts Direct drainage 2.25E-08 1.80E-06 0.0680
5 Repaired Repair parts Ground drainage 2.56E-08 2.05E-06 0.0780
6 Repaired Repair parts No 1.90E-07 1.52E-05 0.0480
7 Replace No Direct drainage 1.73E-06 0.0001 0.3380
8 Replace No Ground drainage 1.97E-06 0.0002 0.3480
9 Replace No No 1.46E-05 0.0012 0.3190
10 Replace Repair parts Direct drainage 2.86E-11 2.29E-09 0.3580
11 Replace Repair parts Ground drainage 3.25E-11 2.60E-09 0.3680
12 Replace Repair parts No 1.69E-10 1.35E-08 0.3380
13 No No Direct drainage 4.63E-04 0.0370 0.0750
14 No No Ground drainage 5.26E-04 0.0420 0.0901
15 No Repair parts Direct drainage 1.43E-05 0.0011 0.0591
16 No Repair parts Ground drainage 1.63E-05 0.0013 0.0693
17 No Repair parts No 1.20E-04 0.0096 0.0476

Fig. 9. External corrosion risk and cost variation.
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