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a b s t r a c t

Amplitude versus offset analysis is a fundamental tool for determining the physical properties of res-
ervoirs but generally hampered by the blurred common image gathers (CIGs). The blurring can be
optimally corrected using the blockwise least-squares prestack time migration (BLS-PSTM), where
common-offset migrated sections are divided into a series of blocks related to the explicit offset-
dependent Hessian matrix and the following inverse filtering is iteratively applied to invert the corre-
sponding reflectivity. However, calculating the Hessian matrix is slow. We present a fast BLS-PSTM via
accelerating Hessian calculation with dip-angle Fresnel zone (DFZ). DFZ is closely related to optimal
migration aperture, which significantly attenuates migration swings and reduces the computational cost
of PSTM. Specifically, our fast BLS-PSTM is implemented as a two-stage process. First, we limit the
aperture for any imaging point with an approximated the projected Fresnel zone before calculating the
Hessian matrix. Then, we determine whether a seismic trace contributes to the imaging point via DFZ
during calculating the Hessian matrix. Numerical tests on synthetic and field data validate the distinct
speedup with higher-quality CIGs compared to BLS-PSTM.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Reservoir characterization increasingly relies on prestack infor-
mation gained from seismic data. Lithology and fluid prediction
based on amplitude-versus-offset (AVO) analysis is often limited to
low-quality common image gathers (CIGs). This is because migra-
tion remains an adjoint operator rather than the inverse operator of
the forward modeling (Claerbout, 1992). In the field applications,
the resulting CIGs suffer from acquisition footprint and distorted
amplitudes due to the poor source-receiver sampling, limited
acquisition aperture and complex overburden. Least squares
migration (LSM) serves as an effective tool to approximate the in-
verse operator (Lailly and Bednar, 1983; Tarantola, 1984), promising
high-quality CIGs.
K. Lu).

y Elsevier B.V. on behalf of KeAi Co
Since being proposed, LSM has gained much attention from
Kirchhoff migration (Schuster, 1993; Nemeth et al., 1999), one-way
migration (Kaplan et al., 2010; Huang and Schuster, 2012) to reverse
time migration (Dai et al., 2011, 2013; Dutta and Schuster, 2014; Tan
and Huang, 2014; Liu et al., 2016; Li et al., 2017; Liu and Peter, 2018).
Due tohigh computational burden, LSM is confined tohowto improve
the stacked images rather than the migrated gathers. In pioneering
works (Duquet et al., 2000; Kühl and Sacchi, 2003; Clapp et al., 2005;
Valenciano et al., 2009), regularization on the migrated gathers can
make the inversion stable and further reduce sampling artifacts.

The high computational burden in the LSM originates from the
Hessian matrix, which denotes the second derivatives of the error
functional with respect to the model parameters. For data-domain
LSM, it doesn't need to calculate the Hessian matrix, but Hessian
matrix determines the convergence rate. For image-domain LSM, it
directly implements the explicit Hessian matrix, which lies on the
square number of the elements in the image space (Plessix and
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lwkmf@mail.tsinghua.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.petsci.2021.12.017&domain=pdf
www.sciencedirect.com/science/journal/19958226
www.keaipublishing.com/en/journals/petroleum-science
https://doi.org/10.1016/j.petsci.2021.12.017
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.petsci.2021.12.017
https://doi.org/10.1016/j.petsci.2021.12.017


B.-W. Jiang, J.-J. Zhang, H. Zhang et al. Petroleum Science 19 (2022) 1031e1047
Mulder, 2004). For any column of Hessian matrix, namely point
spread function (PSF) (Schuster and Hu, 2000; Lecomte, 2008), it
physically describes the migrated results at the image space for the
scattering point, which takes into account all effects including
acquisition geometry, velocity model, and source wavelet. Thus, un-
der the assumption of true migration velocity and known source
wavelet, the explicit computation of Hessian matrix generally re-
quires three-level nested loops (Valenciano et al. 2006, 2009; Tang,
2009), i.e., image-point loop, scattering-point loop, and data-space
loop. The first two depend on the size of image space, and the last
depends on the number of seismic traces in the acquisition geometry.

Jiang and Zhang (2019) propose the blockwise least-squares (BLS)
implementation of prestack time migration (PSTM), where the
migrated common-offset sections are divided into a series of blocks
related to the explicit offset-dependent Hessian matrix and then the
inverse filtering is applied iteratively to invert the corresponding
reflectivity. A blockwise implementation is adopted to reduce the size
of image space, resulting in a drastically reduced size of Hessian
matrix. However, the next main challenge of this method resides in
massive seismic traces. Generally, a few hundred thousand to a few
hundred million traces normally are collected during a 3D seismic
survey. However, for a certain imaging point, contributing traces
remain a small part of total traces, especially for a shallow part.

The contributing traces for a certain imaging point are deter-
mined by the interface Fresnel zone, which is defined as the inter-
section of the Fresnel volume with a reflector and represents the
spatial resolving power of seismic imaging system (Kravtsov and
Orlov, 1990). The projected Fresnel zone (PFZ) denotes the region
at the acquisition surface which pertains to interface Fresnel zone
(Hubral et al., 1993; Schleicher et al., 1997). For a certain imaging
point, the major reflection energy stems from the contributing
traces of the PFZ. The overlying velocity, the frequency band of the
seismic data, and the dip of the reflector affect the size of the Fresnel
zone (Zhang et al., 2016). It is a challenging task to determine a
proper Fresnel zones. The dip-angle common image gather
(Audebert et al., 2002; Landa et al., 2008; Klokov and Fomel, 2013; Li
et al., 2020) facilitates the estimation of fresnel zone. For conven-
tional migration methods, many authors have introduced the Fres-
nel zone (i.e. optimal migration aperture) to eliminate migration
artifacts and reduce the computational cost (Schleicher et al., 1997;
Chen, 2004; Klokovand Fomel, 2013; Zhang et al., 2016). As in Zhang
et al. (2016), which estimates the dip-angle Fresnel zone (DFZ) to
accelerate deabsorption PSTM, we can also reduce the size of data-
space loop via only adopting the contributing traces instead of the
whole traces for a certain imaging point. In this work, we propose
the fast BLS-PSTM via accelerating the explicit numerical compu-
tation of the Hessian matrix with DFZ. Specifically, our acceleration
method includes two steps. First, from DFZ, we give an explicit for-
mula of upper bound for PFZ at any imaging point to reduce the size
of data-space loop before calculating the Hessian matrix. Then, we
determinewhether a seismic trace contributes to the imaging point
via DFZ during calculating theHessianmatrix. Thus, we only need to
loop through the contributing traces instead of all traces to accel-
erating the explicit numerical computation of the Hessian matrix.

We arrange the paper as follows. First, we briefly outline the
theory of BLS-PSTM (Jiang and Zhang, 2019) and provide the
m
�
xp; h

� ¼ ð
V

r
�
xq; h

�
dxq
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xm2Uðxp;hÞ
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�
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computational cost analysis. Then, based on the theory of DFZ
(Zhang et al., 2016), we derive the explicit formula of upper bound
for PFZ at any imaging point and give a detail workflow of the
proposed fast BLS-PSTM. Finally, numerical tests on synthetic and
field data validate the distinct speedup with higher-quality CIGs
compared to BLS-PSTM.
2. Review of blockwise least squares prestack time migration

BLS-PSTM comprises two parts: the explicit numerical computa-
tion of the offset-dependent Hessian matrix and the following itera-
tive inverse filtering. In this section, we mainly review the explicit
formula of offset-dependent Hessian matrix and illustrates the
computational cost of explicit Hessianmatrix. For the part of iterative
inverse filtering, please refer to Jiang and Zhang (2019). The theory of
BLS-PSTM is limited to the 2D case for simplified discussions; ex-
tensions to 3D case are a topic for future research. We derive the
explicit formula of the 2D offset-dependent Hessian matrix by
cascading the forwardmodeling andmigration. Consider a common-
offset configuration, where xm denotes the X coordinate of midpoint
andhdenotes thehalf offset. Recorded common-offset reflectiondata

in the frequency domain, ~dðxm;h;uÞ, can be explicitly summarized:

~dðxm;h;uÞ¼
ð
V

sðuÞGþ�xm�h;xq;u
�
Gþ�xq;xmþh;u

�
r
�
xq;h

�
dxq;

(1)

where xq, xm � h, xm þ h denote the X coordinates of scattering
point, shot and receiver, respectively; r

�
xq;h

�
is the offset-

dependent reflectivity at the scattering point xq; Gþ�xm � h; xq;u
�

and Gþ�xq; xm þ h;u
�
represent the forward-propagated Green's

function from the shot to the scattering point and from the scat-
tering point to the receiver point; and sðuÞ represents the source
wavelet. Equation (1) can be compactly represented in matrix-
vector notations, as d ¼ Lr.

As in Zhang and Zhang (2014), deconvolution imaging condition
used in PSTM yields

m
�
xp; h

� ¼ X
xm2Uðxp;hÞ

ð
u

G��xm þ h; xp;u
�~dðxm;h;uÞ

sðuÞGþ�xm � h; xp;u
� du; (2)

wherem
�
xp;h

�
denotes the prestackmigrated result at the imaging

point xp; Gþ�xm � h; xp;u
�

represents the forward-propagated
Green's function from the shot to the imaging point, and
G��xm þ h; xp;u

�
represents the backward-propagated Green's

function from the receiver to the imaging point. Here, U
�
xp;h

�
represents the optimal migration aperture determined by dip-
angle Fresnel zone (Zhang et al., 2016). Equation (2) can also be
compactly represented in matrix-vector notations, as m ¼ Lyd,
where Ly represents the migration operator (Jiang and Zhang,
2019).

By substituting Equation (1) into Equation (2) and changing the
order of integration, we have
xq;u
�
Gþ�xq; xm þ h;u

�
xp;u

� du; (3)



Fig. 1. Dip-angle migrated gather of a horizontal layer model. 0:5tw denotes the half
period. We find that migrated event exhibits concave shape and the apex of the curve
is 0� corresponding to the dip angle of the horizontal reflector, as indicated by the red
line.
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where fc is the upper cutoff frequency. A compact representation of
Equation (3) is m ¼ LyLr, where the kernel, LyL ¼ H, is the offset-
dependent Hessian matrix. The explicit form reads
H
�
xp; xq; h

� ¼ X
xm2Uðxp;hÞ

ð2pfc
�2pfc

G��xm þ h; xp;u
�
Gþ�xm � h; xq;u

�
Gþ�xq; xm þ h;u

�
Gþ�xm � h; xp;u

� du: (4)
Note that the Hessian matrix in Equation (4) only needs the
upper cutoff frequency fc instead of the source wavelet sðuÞ
resulting from the deconvolution imaging condition. Thus, explicit
formula of Hessian matrix in Equation (4) avoids the challenging
task of estimating the sourcewavelet, but can not improve the time
resolution (Jiang and Zhang, 2019).

In PSTM (Zhang and Zhang, 2014), wewrite the Green's function
explicitly as

G±ðx; xA;uÞ ¼
T

t
3
2Vrms

ffiffiffiffi
u

p
e±i

p
4eHiut; (5)

where i is the imaginary unit, t and T is the travel-time and the one-
way vertical travel-time from the x in the subsurface to the xA in the
acquisition surface and Vrms is the root mean square (rms) velocity.
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Here, the superscript ± represents the forward-propagated or
backward-propagated Green's function. Substituting Equation (5)
into Equation (4), we have

H
�
xp; xq; h

� ¼ X
xm2Uðxp;hÞ

T2q
V2
rms
�
xq
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
tsp

tsqtgqtgp

�3
s

X2pfc
�2pfc

uejuðtspþtgp�tsq�tgqÞdu

¼
X

xm2Uðxp;hÞ

T2q
V2
rms
�
xq
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
tsp

tsqtgqtgp

�3
s

F
�
tsp þ tgp � tsq � tgq

�
;

(6)

where FðtÞ reads

FðtÞ ¼ 2pfct sinð2pfctÞ þ cosð2pfctÞ � 1

t2
; (7)

For a certain scattering point xq, an element of Hessian matrix,
H
�
xp; xq;h

�
, denotes the response of the seismic imaging system at

the imaging point xp.
It is not feasible to compute a total Hessian matrix via Equation

(6) in practice because of its size. We adopt a blockwise imple-
mentation (Jiang and Zhang, 2019), where a migrated COS is par-
titioned into a series of blocks related to the explicit offset-
dependent Hessian matrix. To eliminate boundary effects origi-
nating from a direct partitioning, we apply a reflector-oriented
localized approach to modify the blockwise Hessian matrix. Thus,
we use a series of computationally tractable small-sized Hessian
matrices to optimize the migrated COS via iterative inverse
filtering, which is solved by split Bregman algorithm (Goldstein and
Osher, 2009) with total-variation regularization.
3. Dip-angle Fresnel zone and the corresponding projected
Fresnel zone

The Fresnel zone is jointly determined by the overlaid velocity,
frequency band of seismic data and the reflector dip. Therefore, it is
a challenging task to find an appropriate Fresnel zone. Zhang et al.
(2016) estimated the Fresnel zone in dip-angle gathers, where the
reflection event obtained by migration exhibits concave shape and
the apex of the curve corresponds to the dip angle of the reflector as
shown in Fig. 1. Here, we provide a simple derivation of the gen-
eration of dip-angle gathers via PSTM for 2D case in accordance
with Zhang et al. (2016) in Appendix A. In the view of the stationary
phase theory, the apex is the stationary point and the local flat part
around the apex is the Fresnel zone. In detail, Fresnel zone is
located at the region, where the vertical travel-time difference



Fig. 2. Illustration of the relationship of the DFZ and the PFZ for a certain imaging point, I. 4� and 4þ denote the lower and upper limits of the imaging dip of point I namely the DFZ.
PFZ of point I is denoted as the yellow part of X axis between the green and red points, where the imaging dip, 4, determined by the shot, the geophone and the imaging point lies in
the DFZ, namely 4� � 4 � 4þ.
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between migrated event and the apex in the dip-angle gathers is
less to a half period, as denoted by 0:5tw in Fig. 1. Hence, we can
simply determine the Fresnel zone in the dip-angle gather, termed
as dip-angle Fresnel zone (DFZ). In reality, it is difficult to directly
estimate the Fresnel zones for the field data due to the lower signal-
to-noise ratio (SNR). Zhang et al. (2016) propose a scheme for the
automated estimation of the Fresnel zones from the migrated dip-
angle gathers. Sun et al. (2019) investigates the application of DNNs
for identifying the lower and upper limits of the Fresnel zone in the
dip-angle gathers automatically.

By introducing DFZ to explicit numerical computation of the
Hessian matrix, we first give the corresponding computational cost
analysis. Suppose that the ratio of the number of contributing
traces to the number of all traces is Ra. If a seismic trace contributes
to the migrated results, the corresponding imaging dip determined
by Equation (A-10) will lie in the DFZ, which needs to calculate
traveltime for 2 times. Hence, the computational cost of the Hessian
matrix with DFZ is

�
4Ra,ntr,n2x,n

2
z þ 2ntr

�
,tt. For massive seismic

traces in the field data, it is also expensive.
3.1. Derivation of upper bound for projected Fresnel zone in the
zero-offset case

Hence, in this part, an explicit formula of upper bound for
projected Fresnel zone (PFZ) is derived to avoid looping through all
traces and bring a reduced storage requirement for the coordinates
of shot and receiver locations for all traces. Suppose a common-
offset configuration in Fig. 2, where h denotes the half offset, and
Table 1
Comparison of the computational cost and memory requirement for the

Methods Computational cost

Hessian 4ntr,n2x,n
2
z,tt

Hessian with DFZ
�
4Ra,ntr,n2x,n

2
z þ 2ntr

Hessian with PFZ
�
4Ra,ntr,n2x,n

2
z þ 2Rb
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xs, xm and xg denotes the X coordinates of shot S, midpoint M and
receiver G, respectively. The imaging point I is at ðx;TÞ. Point O has
the same X coordinates as imaging point I. Set OM ¼ l and we
rewrite the X coordinates of shot and receiver as

xs ¼ xþ l� h

xg ¼ xþ lþ h (8)

Substituting Equation (8) into Equation (A-10), we have

tan 4x ¼ l
VrmsT

þ
�
ts � tg

�
h�

ts þ tg
�
VrmsT

(9)

where ts and tg represent the travel-time between the shot
(receiver) and the imaging point, respectively; and 4x represents
the imaging dip at I. 4x will be positive if right inclined, otherwise
negative. Note that if we exchange the location of shot and the
location of receiver, the corresponding imaging dip doesn't change.

Firstly, we consider a simple zero-offset case. Now, Equation (9)
can be simplified to

tan 4x ¼ l
VrmsT

: (10)

Suppose that the seismic trace contributes to the imaging point
I, and there exists following relationship:
Hessian matrix among different methods.

Memory requirement (Byte)

4n2x,n
2
z þ 8ntr þ 4nx,nz�

,tt 4n2x,n
2
z þ 8ntr þ 12nx,nz

ntr
�
,tt 4n2x,n

2
z þ 8Rb,ntr þ 12nx,nz



Fig. 3. Workflow chart for the proposed method.

Fig. 4. Acquisition geometry with the nonuniform coverage for synthetic data. (a) displays th
traces versus offset.
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tan 4� � l
VrmsT

� tan 4þ; (11)

where 4� and 4þ denotes the upper and lower limits of DFZ,
respectively. Substituting Equation (8) into Equation (11), we have

xþ tan 4�d � xs or xg � xþ tan 4þd; (12)

where d ¼ VrmsT denotes the depth of imaging point. Equation (12)
gives an explicit formula of the zero-offset PFZ, which depends on
the dip-angle Fresnel zone, depth and lateral coordinate of imaging
point.

3.2. Derivation of upper bound for projected Fresnel zone in the
finite-offset case

Next, we consider a finite-offset case. In the same way, there
exists following relationship:

tan 4� � l
VrmsT

þ
�
ts � tg

�
h�

ts þ tg
�
VrmsT

� tan 4þ: (13)

Also, we substitute Equation (8) into Equation (13) and the
finite-offset PFZ can be expressed as

xþ tan 4�d� 2tsh
ts þ tg

� xs � xþ tan 4þd� 2tsh
ts þ tg

xþ tan 4�dþ 2tgh
ts þ tg

� xg � xþ tan 4þdþ 2tgh
ts þ tg

(14)

Hence, determining whether the seismic trace belongs to PFZ
via Equation (14) needs to compute the ts and tg, which has the
same computational cost as determining whether the seismic trace
belongs to DFZ via Equation (A-10). Notice that the length of the
finite-offset PFZ is constant, which reads dðtan4þ � tan4�Þ. Hence,
we simplify the Equation (14) to

x� dðtan 4± tan 4�Þ � xs or xg � xþ dðtan 4± tan 4�Þ: (15)

The use of Equation (15) is easy, but it enlarges the range of PFZ
for the finite-offset PFZ. In fact, we reduce the computational cost of
Hessian matrix by using a two-stage process. First, we use the
explicit formula of upper bound for PFZ (Equations (12) and (15)) to
reduce the size of data-space loop before calculating the Hessian
matrix. Then, we can further determine whether a seismic trace
contributes to the imaging point by using the dip-angle Fresnel
zone during calculating the Hessianmatrix. Because the upper limit
of PFZ is determined by the DFZ, depth and lateral coordinate of
imaging point. Migrationmethods are used to image the full picture
of subsurface structure with a larger imaging depth. According to
e fold map (fold number vs. CDP) for the 300 m COS. (b) displays the number of seismic



Fig. 5. Dip-angle gather at CDP 200 in the synthetic example. Blue and red lines
denote the lower and upper bounds of the dip-angle Fresnel zone.

Fig. 6. The lower and upper bounds of the dip-angle Fresnel zones are displayed in (a) and (b), respectively. Note that we display the tangent value of the dip angles.

Fig. 7. Ratio of the contributing traces and the whole seismic traces. We can see more
contributing traces in the deeper part.
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Fig. 8. Comparison of common-offset sections with the offset around 300 m obtained by using (a) PSTM, (b) BLS-PSTM, (c) PSTM þ DFZ, and (d) BLS-PSTM þ DFZ, respectively.
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the Equation (15), a larger imaging depthmeans a larger PFZ radius.
So the upper limit of PFZ plays a bit role of reducing cost of
migration. Instead, in BLS-PSTM, we calculate the Hessian matrix in
a blockwise manner and each column of Hessian matrix, namely
point spread function (PSF), physically describes a scattering point's
migrated results for a small block. Thus, for the block, especially a
block in the shallow part, the contributing traces estimated by the
upper limit of PFZ are a small part of all data traces.

Suppose that the ratio of the rough number of contributing
traces via PFZ to the number of all traces is Rb, where Rb is slightly
1037
larger than Ra with a negligible computational cost. The corre-
sponding computation cost of explicit Hessian matrix with two-
stage process is

�
4Ra,ntr,n2x,n

2
z þ 2Rbntr

�
,tt.

As tomemory requirement, a direct implementation of Equation
(6) requires to store the Hessian matrix with the size of n2x,n

2
z , the

velocity model with the size of nx,nz, and the lateral coordinates of
shot and receiver location for all traces with the size of 2ntr. The
total memory requirement is 4n2x,n

2
z þ 8ntr þ 4nx,nz byte.

Compared to the direct implementation of Equation (6), the explicit
Hessian matrix with DFZ additionally needs to store the lower and
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the upper of DFZ with the total memory requirement of
4n2x,n

2
z þ 8ntr þ 12nx,nz byte. Compared to the explicit Hessian

matrix with DFZ, the explicit Hessian matrix with two-stage pro-
cess only needs to store the contributing traces with the total
memory requirement of 4n2x,n

2
z þ 8Rb,ntr þ 12nx,nz byte. We

summarize the computational cost and memory requirement
among different methods in Table 1, which indicates that the
explicit Hessian matrix with PFZ has less computational cost and
memory requirement. As shown in the following synthetic and
field data sets, Ra and Rb range from 0.1 to 0.5. Therefore, the
proposed accelerating strategy has a drastically reduced runtime
and memory requirement.

Fig. 3 shows the workflow chart for the resulting fast BLS-PSTM.
First, we generate the dip-angle gathers via PSTM with Equation A-
10 and estimated the DFZ. After that, we obtain the migrated
common-offset sections (COS) via PSTM þ DFZ. Then, each
migrated COS is divided into a series of blocks related to the explicit
offset-dependent Hessian matrix (Jiang and Zhang, 2019). Thus, we
can calculate the upper bound of the projected Fresnel zone via
Equation (12) or 15 and compute the explicit Hessian matrix via
Equation (6). An iterative inverse filtering (Jiang and Zhang, 2019) is
performed to obtain an optimized block. We reorganize these
blocks into optimized COS and loop all migrated COS. Finally, the
optimized CIGs can be obtained effectively by the proposed fast
BLS-PSTM.
Fig. 9. Comparison of normalized amplitudes of seismic trace at CDP 200 in Fig. 8. In this exa
BLS-PSTM þ DFZ, which is more consistent with the ground truth.

Fig. 10. Comparison of normalized amplitudes along the reflector at 1.2 s in Fig. 8. In this exa
is more consistent with the ground truth.

1038
4. Numerical examples

In this section, we will use a synthetic data set and a field data
set to demonstrate the performance of the fast BLS-PSTM.
4.1. Synthetic data

We first test our acceleration strategy on a simple synthetic data
set, which is simulated by using the Kirchhoff 2D modelling
method with analytical Green's functions, introduced in Haddon
and Buchen (1981). The background velocity is set to 2.0 km/s.
We use a 30 Hz Ricker wavelet to generate data set. Note that the
coverage is nonuniform for synthetic examples. We display the fold
map (fold number vs. CDP) for the 300 m COS in Fig. 4(a) and the
curve of number of traces versus offset in Fig. 4(b). The synthetic
data example consists of six layers. For simplicity, each layer has the
same reflection coefficients and has the constant amplitude-
versus-offset (AVO).

A typical dip-angle gathers is generated by following the
Equation (A-10), as shown in Fig. 5. As indicated by blue and red
lines in Fig. 5, we estimate the lower and upper limits of imaging
dip, namely the dip-angle Fresnel zone (DFZ) at 10-CDP interval.
Finally, we generate the whole dip-angle Fresnel zone via lateral
and vertical interpolation. Fig. 6(a) and (b) show the lower and
upper limits (tan4� and tan4þ in Equations (11) and (13)) of the
mple, amplitudes for the all reflector are set to 1. Pentagram denotes the amplitudes by

mple, amplitude doesn't vary along the reflector. Blue line obtained by BLS-PSTM þ DFZ
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DFZ in the target imaging zone, respectively. Based on the esti-
mated DFZ, we use the Equations (12) and (15) to determine the
upper bound of PFZ for any imaging point. We use the upper bound
Fig. 11. A typical CIG at CDP 200 obtained by (a) PSTM, (b) BLS-PSTM, (c) PSTM þ DFZ, and
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of PFZ to determine the contributing traces. Fig. 7 shows the ratio
Rb of the number of contributing traces and the number of the
whole seismic traces at the offset of 300m. From the Equations (12)
(d) BLS-PSTM þ DFZ, respectively. We display the AVO of r1, r2, r3, and r4 in Fig. 12.
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and (15), the length of PFZ is proportional to the depth of imaging
point. Hence, we can see that there are more contributing traces in
the deeper part.

Fig. 8 shows the common-offset sections (COS) with the offset
around 300 m obtained by using (a) PSTM, (b) BLS-PSTM, (c)
PSTMþ DFZ, and (d) BLS-PSTMþ DFZ, respectively. In the synthetic
example, we divide the COS into a series of blocks with the size of
80 � 80. In comparison with Fig. 8(a) and (b), we observe that BLS-
PSTM optimizes the traditional migrated result with most of the
migration swings removed. The runtime of numerical Hessian
matrix in BLS-PSTM is 380.62 s with the total 4472 traces.
Compared to Fig. 8(a) and (c) has less migration swings left as
pointed by arrow due to the use of DFZ. We further improve the
Fig. 8(c) using the BLS-PSTM þ DFZ as shown in Fig. 8(d) with no
migration swings left. The runtime of numerical Hessian matrix in
BLS-PSTM þ DFZ is 73.64 s with Rb shown in Fig. 7 at a significantly
reduced computational cost (more than five times faster).

As displayed in Fig. 9, we provide a quantitative comparison of
waveform at CDP 200 of Fig. 8, where black line plots the blurred
waveform in Fig. 8(a), and blue mark ‘þ‘, green mark ‘*’, and red
Fig. 12. Quantitative comparison of AVO in Fig. 11 for (a) r1, (b) r2, (c) r3, (d) r4, respectiv
PSTM þ DFZ are more consistent with the ground truth.
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pentagram represent the reflectivity picked from Fig. 8(b), (c), and
(d), respectively. Note that each of reflectors has the same reflection
coefficient. Hence, deblurred results by BLS-PSTM þ DFZ is more
consistent with the ground truth. In Fig. 10, we display the
normalizedamplitudes of the second reflectorat 1.2 s of Fig. 8,where
red, black, green, and blue lines represent the picked amplitudes of
Fig. 8(a), (b), (c), and (d), respectively. The reflector by BLS-
PSTMþDFZ hasmore consistent amplitudes with the ground truth.

Fig. 11 shows the comparison of CIG at CDP 200 obtained by (a)
PSTM, (b) BLS-PSTM, (c) PSTM þ DFZ and (d) BLS-PSTM þ DFZ,
respectively. Compared to Fig. 11(a) and (bed) show less migration
artifacts. We compare the AVO of r1, r2, r3, and r4 in Fig. 12(aed),
respectively. In the synthetic example, amplitude does not vary
with offset. In Fig. 12, red, black, green and blue lines plot the AVO
obtained by using PSTM, BLS-PSTM, PSTM þ DFZ and BLS-
PSTM þ DFZ, respectively. Deblurred AVO by BLS-PSTM þ DFZ is
more consistent with the ground truth. Thus, synthetic example
demonstrates the validity of our fast BLS-PSTM method at a
significantly reduced computational cost.
ely. In this example, amplitude does not vary with offset. Blue lines obtained by BLS-



Fig. 13. Dip-angle gather at CDP 1900 in the field example. Blue and red lines denote
the lower and upper bounds of the dip-angle Fresnel zone.
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4.2. Field data

We further test our acceleration strategy on a 2D field data set.
The field data set is acquired by a single cable, containing 240
receiver groups spaced at 12.5 m. Offsets vary between 275 and
3263 m. There are 3560 shots with 25 m shot spacing in total. The
record length is 8 s with a sample rate of 2 ms. We migrate the field
data set on the common offset gather at 30 m interval. We set the
imaging dip ranging within ð� 40�;40�Þ. We use the Equation (A-
10) to generate a dip-angle gather as shown in Fig. 13. Here, blue
line and red line denote the lower and upper limits of the DFZ,
Fig. 14. Dip-angle gathers at CDP from 1890 to 1900 within the DFZ. A linear interpolation i
red lines.
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respectively. We estimate the DFZ at 10-CDP interval. Finally, we
generate the whole dip-angle Fresnel zone via lateral and vertical
interpolation. In Fig. 14, we show the dip-angle gathers at CDP from
1890 to 1900 within the DFZ. A linear interpolation is adopted to
determine the lower and upper bounds of the DFZ as denoted by
blue and red lines. Fig. 15(a) and (b) show the lower and upper
limits (tan4� and tan4þ in Equations (11) and (13)) of the DFZ in the
target imaging zone overlaid on migrated section, respectively.
Usually, the dip of the strata varies smoothly and so are the lower
and upper bounds of the dip-angle Fresnel zones. However, there
are many faults in the target migrated section. So we extend the
range of the dip-angle Fresnel zones to contain more diffracted
energy and image the faults better. That is why the lower and upper
bounds of the dip-angle Fresnel zones vary laterally so hard. Based
on the Equations (12) and (15), we determine the upper bound of
PFZ for any imaging point. Fig. 16 shows the ratio Rb of the number
of contributing traces and the number of the whole seismic traces.
From the Equations (12) and (15), the upper bound of PFZ is pro-
portional to the imaging point's depth. So we can see more
contributing traces in the right part due to a higher velocity.

Fig. 17 displays the comparison of stacked images obtained by
using (a) PSTM, (b) BLS-PSTM, (c) PSTM þ DFZ, and (d) BLS-
PSTM þ DFZ, respectively. Fig. 18 shows the enlarged detail of the
white dashed box in Fig.17. To better show themigrated section, we
display the images with the aspect ratio of 8:5 instead of the true
aspect ratio of 5:1. Hence, the maximum imaging dip is clearly
above 40�. In Fig. 13, we observe the noises outside the DFZ, which
will generate the migration artifacts in the migrated sections as
shown in Fig. 17(a). Instead of traditional migration aperture, we
only stack the dip-angle gathers within the DFZ, resulting in the
migrated section with the enhanced SNR in Fig. 17(c). Stacked
sections of PSTM and PSTMþ DFZ are separately optimized by BLS-
PSTM and BLS-PSTM þ DFZ in Fig. 17(b) and (d), respectively. LS-
PSTM þ DFZ in Fig. 17(d) achieves a high SNR and eliminates most
of the migration artifacts.

With the help of the acceleration strategy, we can further
generate the high-quality migrated gathers obtained by using BLS-
PSTM þ DFZ. Single-offset images for the offset around 1200 m are
shown in Fig. 19, where (a), (b), (c) and (d) represent the COS ob-
tained by PSTM, BLS-PSTM, PSTM þ DFZ, and BLS-PSTM þ DFZ,
respectively. Fig. 20 shows the enlarged detail of the white dashed
box in Fig. 19. Compared to Fig. 19(a) and (b) by BLS-PSTM shows a
more focused reflection and less migration artifacts. In the field
example, we divide the COS into a series of blocks with the size of
60 � 60. The runtime of numerical Hessian matrix in BLS-PSTM is
84.93 s with the total 7120 traces in the offset group. For the noisy
s adopted to determine the lower and upper bounds of the DFZ as denoted by blue and



Fig. 15. The lower (a) and the upper (b) bounds of the dip-angle Fresnel zones overlaid on migrated section. Note that we display the tangent value of the dip angles.

Fig. 16. (a) Migration velocity. (b) Ratio of the contributing traces and the whole seismic traces. We can see more contributing traces in the right part due to the higher velocity.

Fig. 17. Comparison of stacked sections by superimposing the common-offset sections of (a) PSTM, (b) BLS-PSTM, (c) PSTM þ DFZ, and (d) BLS-PSTM þ DFZ, respectively.
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Fig. 18. The enlarged detail of the box in Fig. 17.
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field dataset, determining the DFZ depends mainly on the experi-
ence. Here, we just use the automated estimation of the Fresnel
zones from the migrated dip-angle gathers, introduced by Zhang
et al. (2016). The corresponding COS by PSTM þ DFZ is displayed
in Fig. 19(c). Compared to Fig. 19(a), lots of migration swings are
removed. We further perform BLS-PSTM þ DFZ on the COS of
PSTM þ DFZ, as shown in Fig. 19(d). Compared with Fig. 19(c),
remaining noises are much removed. The runtime of numerical
Hessian matrix in BLS-PSTM þ DFZ is 28.71 s with Rb shown in
Fig. 16 at a significantly reduced computational cost (almost three
times faster).

The corresponding CIG at CDP 1900 obtained by PSTM, BLS-
PSTM, PSTM þ DFZ, and BLS-PSTM þ DFZ are shown in
Fig. 21(aed), respectively. It is noted that a trace at CDP 1900 of
stacked image by PSTM in Fig. 17(a) is seen as a reference tracewith
red and blue lobes. Compared to Fig. 21(aec), Fig. 21(d) is more
consistent with the reference trace. More importantly, we observe
that event coherence is adopted and some weak events can be
probed plainly as pointed by blue box in Fig. 21(d). These make
blockwise LS-PSTM results more open to interpretation, and
potentially allow for AVO analysis.
5. Discussion

The calculation and storage of Hessian matrix is the heart of the
image-domain least squares migration, whether it is based on the
Kirchhoff migration, like PSTM and PSDM, or wave-equation
migration, like reverse time migration (RTM). In this work, we
focus on improving the computational efficiency of Hessian
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calculation. Our contribution is twofold. Firstly, dip-angle Fresnel
zone (DFZ) is integrated with the Hessian calculation to improve
the performance and reduce the computational cost of the BLS-
PSTM. Secondly, the upper limit of projected Fresnel zone (PFZ) is
derived to reduce the computational cost of Hessian matrix further
via looping through the contributing traces instead of the all data
traces before calculating the Hessian matrix.

It is necessary to explain that DFZ has been used to reduce the
migration noise, as in Klokov and Fomel (2013); Zhang et al. (2016);
Liu and Zhang (2018); Liu (2019), whilst the upper limit of PFZ
cannot reduce the cost of traditional migration methods. Because
the upper limit of PFZ (Equations (12) and (15)) is determined by
the DFZ, depth and lateral coordinate of imaging point. Migration
methods are used to image the full picture of subsurface structure
with a larger imaging depth. According to the Equations (12) and
(15), a larger imaging depth means a larger PFZ radius. Thus,
almost all seismic traces are contained in the upper limit of PFZ. So,
the upper limit of PFZ plays a bit role of reducing cost of migration.
Instead, in BLS-PSTM, we calculate the Hessian matrix in a block-
wise manner and each column of Hessian matrix, namely point
spread function (PSF), physically describes a scattering point's
migrated results for a small block. For the block, especially a
shallow block, the contributing traces estimated by the upper limit
of PFZ are a small part of all data traces. Hence, it is very helpful for
the BLS-PSTM to only consider the contributing traces via the upper
limit of PFZ.

In this work, we take the first steps in improving the perfor-
mance and reducing the computational cost of LSM via DFZ, and in
that sense proposing a new research direction. Whilst we only



Fig. 19. Comparison of common-offset sections with the offset around 810 m obtained by using (a) PSTM, (b) BLS-PSTM, (c) PSTM þ DFZ, and (d) BLS-PSTM þ DFZ, respectively.

Fig. 20. The enlarged detail of the box in Fig. 19.
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Fig. 21. A typical CIG at CDP 1900 obtained by (a) PSTM, (b) BLS-PSTM, (c) PSTM þ DFZ, and (d) BLS-PSTM þ DFZ, respectively. We select a reference trace with blue and red lobes at
1900 CDP of stacked section by PSTM in Fig. 17(a).
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present methods for 2D time migration considering a laterally
invariant or weakly variant medium, and we believe there are
challenges to extending our methods to 3D and more heteroge-
neous medium based on our first steps. As discussed in Jiang and
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Zhang (2019), prestack depth migration (PSDM) or Gaussian
beammigration (GBM) (Yang et al., 2015; Zhang et al., 2019) can be
adopted to the proposed framework of BLS-PSTM, where we only
need to calculate the traveltime and amplitude of Green's function
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via ray tracing. Also, the DFZ in depth domain is also discussed in
Klokov and Fomel (2013). Therefore, it is necessary and feasible to
extend the proposed method to the more heterogeneous media. As
for the 3D case, the biggest issue we face is the 3D Hessian calcu-
lation and storage, especially for boundary effects due to a smaller
size of block limited by the GPUmemory. Another point of concern
for the 3D complex medium is to interpolate a 3D imaging dip field
to obtain the overall estimation of DFZ. It is necessary to improve
the interpolation algorithm. In addition, deep learning might be
more powerful to estimate the full 3D dip field (Sun et al., 2019;
Cheng et al., 2021). In total, we believe further research is needed
and the avenue could eventually yield practical and useful tools for
industrial applications.

6. Conclusions

Based on the DFZ, we calculate the explicit Hessian matrix by
looping through the contributing traces instead of all data traces.
The acceleration strategy runswith explicit formula of upper bound
for PFZ and does not introduce an additional computational cost. In
the synthetic and field data sets, we generate the higher-quality
migrated gathers by using the BLS-PSTM at a significantly
reduced computation and memory cost. Fresnel zone is jointly
determined by the overlaid velocity, frequency band of seismic data
and the reflector dip. The dip-angle migrated gather makes it easy
to determine the Fresnel zone.We derive an explicit formula for the
upper bound of PFZ at any imaging point by the lower and upper
limits of dip-angle Fresnel zone as well as its depth. Though the
calculation of finite-offset PFZ is expensive, we notice that the
length of the finite-offset PFZ is easy to compute. Hence, we use a
slightly loose formula to express the upper bound of PFZ. In prac-
tice, we use a two-stage process to reduce the computational cost
and memory cost of Hessian matrix. First, we use the upper bound
of PFZ to reduce the size of data-space loop before calculating the
Hessian matrix. Then, we can further determine whether a seismic
trace contributes to the imaging point by using the dip-angle
Fresnel zone during calculating the Hessian matrix.
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Appendix. The dip-angle gathers of PSTM

In the frequency-wavenumber domain ðu; kxÞ, the wavefield
recorded at a receiver xg can be expressed as FðuÞe�jkxxg , where j
denotes the imaginary unit and FðuÞ denotes the Fourier transform
of seismic trace. Assuming a laterally invariant or weakly variant
medium, the downward continuation of the recorded wavefield is

~P

 
kx;u; T ¼

Xn
i¼1

DTi

!
¼ FðuÞexp�� jkxxg

�

exp

0
@ju

Xn
i¼1

DTi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2i

u2k
2
x

s 1
A (A-1)

here, the laterally invariant or weakly variant of the medium is
vertically divided into n layers; vi is the i-th interval velocity, DTi is
the one-way vertical travel-time through each layer that reads
DTi ¼ Dzi=vi with Dzi denoting the thickness of the layer, and
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T ¼Pn
i¼1DTi is the one-way vertical travel-time from the acquisi-

tion surface to the target imaging depth.

By introducing the RMS velocity, V2
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Zhang, 2014) approximate
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Substituting Equation (A-2) into Equation (A-1) and then
applying the spatial inverse Fourier transform, we have

Pðx;u; TÞ ¼ u
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�
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

rmsp
2
x

q
þ px

�
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��
dpx;

(A-3)

where px ¼ kx
u denotes the ray parameter in the X direction.

Here, we define

FðpxÞ ¼ T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

rmsp
2
x

q
þ px

�
x� xg
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According to stationary phase method (Bleistein, 1984), the
main contribution of the oscillation integral in Equation (A-3)
comes from the stationary point pgx, which is obtained by solving

vFðpxÞ
vpx

¼ 0: (A-5)

The solution of Equation (A-5) reads

pgx ¼ x� xg

Vrms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
x� xg

�2 þ V2
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2
q : (A-6)

here, ray parameters pgx is related to the scattered ray vector at
imaging point ðx;TÞ, which is denoted as v! in Fig. 2.

Based on the Snell theory, we have the direction cosines
�
lg;ng

�
of the scattered-ray vector v! as
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where r ¼ v=Vrms. In the same way, we have the direction cosines
ðls;nsÞ of the incident-ray vector as denoted by w! in Fig. 2:

ls ¼ rðx� xsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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where xs denotes the lateral coordinates of the shot.
In migration, the normal, n! in Fig. 2, to the imaging reflector at

imaging point I can be expressed as n! ¼ v!þ w! ¼ �lg þ ls;ng þ ns
�
.

Let ðcosqx; sinqxÞ be the direction cosines of the imaging reflector as
denoted by G in Fig. 2, where qx represents the imaging dip angle.
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The orthogonality of ðcosqx; sinqxÞ with the normal, n!, yields

tan qx ¼ � ls þ lg
ns þ ng

: (A-9)

Note that the reflector dip qx expressed by Equation (A-9) rep-
resents the true structure dip in 2D space. However, the reflector
will exhibit a slightly different dips inside the imaging space ob-
tained by PSTM, which we call the traveltime-related dip angles
(Zhang et al., 2016). Hence, in PSTM, the traveltime-related dip
angles are more practical. Here, we obtain the travel-time-related
dip angles, 4x by setting r ¼ 1 in Equations (A-7) and (A-8)
(Zhang et al., 2016) as

tan 4x ¼ ðxs � xÞtg þ
�
xg � x

�
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�
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and

tg ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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represent the travel-time from the shot to the imaging point and
the travel-time from the receiver to the imaging point, respectively.
Incorporating the solution of Equation (A-10) into the PSTM pro-
cessing, we can obtain the dip-angle gathers.
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