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a b s t r a c t

Statistical prediction is often required in reservoir simulation to quantify production uncertainty or
assess potential risks. Most existing uncertainty quantification procedures aim to decompose the input
random field to independent random variables, and may suffer from the curse of dimensionality if the
correlation scale is small compared to the domain size. In this work, we develop and test a new approach,
K-means clustering assisted empirical modeling, for efficiently estimating waterflooding performance for
multiple geological realizations. This method performs single-phase flow simulations in a large number
of realizations, and uses K-means clustering to select only a few representatives, on which the two-phase
flow simulations are implemented. The empirical models are then adopted to describe the relation be-
tween the single-phase solutions and the two-phase solutions using these representatives. Finally, the
two-phase solutions in all realizations can be predicted using the empirical models readily. The method
is applied to both 2D and 3D synthetic models and is shown to perform well in the P10, P50 and P90 of
production rates, as well as the probability distributions as illustrated by cumulative density functions. It
is able to capture the ensemble statistics of the Monte Carlo simulation results with a large number of
realizations, and the computational cost is significantly reduced.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Reservoir simulation allows an engineer to evaluate various
complex scenarios and predict the future reservoir performance
(Aziz, 1979; Wang et al., 2017; Lie, 2019; Yavari et al., 2021; Rao
et al., 2021). Obtaining direct measurements or hard data for the
whole field is too expensive, even if possible. The geostatistically-
based approaches are usually used to generate multiple re-
alizations of hydrodynamic parameters (Deutsch, 2002). In the past
several decades, statistical prediction methods for fluid flow and
transport in porous media have been developed intensively and
widely used in water resources engineering and oil production
industry (Zhang, 2001; Caers, 2005; Lee et al., 2019; Xue et al.,
2021).
y Elsevier B.V. on behalf of KeAi Co
In the numerical approaches, the widely used Monte Carlo (MC)
method involves solving the forward model multiple times on
random samples. Albeit robust and straightforward, it often re-
quires an extremely large number of realizations to generate sta-
tistically accurate results and hence may become prohibitive,
especially for large-scale models (Ballio and Guadagnini, 2004).

Another alternative is the stochastic or probabilistic collocation
method, which constructs polynomial approximation based on the
model responses on selected collocation points (Li and Zhang,
2007; Lin and Tartakovsky, 2009; Xiu, 2010; Liao and Zhang,
2013). Specifically, the input random field is decomposed using
the Karhunen-Loeve expansion/principle component analysis
(Zhang and Lu, 2004), and the output random field is approximated
via the Lagrange interpolation or orthogonal basis function, whose
coefficients are solved by pseudo-spectral projection or matrix
inversion (Le Maître and Knio, 2010). It is found to be quite
promising for low-tomoderate-dimensional models using Smolyak
sparse grids (Xiu and Hesthaven, 2005; Liao et al., 2017b).
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However, for some large-scale reservoir models, we can only
afford to run several (usually of order O(1)) realizations. In contrast,
the number of required realizations are usually of order O(10),
when the correlation length is relatively large compared to the
domain size (Liao et al., 2017a). It can be even worse if the corre-
lation length is much smaller than the domain size, where the
eigenvalue will decay at a very slow rate and hence the truncation
error will be very large if some of the terms are neglected. Thus, a
large number of orthogonal bases have to be retained with an
exponential growth of computational cost, which is the well-
known “curse of dimensionality”.

In this study, we propose to use the single-phase flow solutions
to approximate the two-phase flow solutions, which will provide a
significant speed-up without losing much accuracy. Specifically,
instead of carrying out time-intensive two-phase flow simulations
for a large number of realizations, we first perform single-phase
flow simulations on all these realizations, then use K-means clus-
tering to choose one representative in each group, and perform
two-phase flow simulations on the representatives only. These
two-phase flow simulations (on the representatives) and single-
phase flow simulations (on all these realizations) allow us to get
the empirical models, which are used to predict the two-phase
solutions in all realizations.

The idea in this study is similar to the decline curve analysis
(DCA), which is a reservoir engineering empirical technique that
extrapolates trends in the production data from oil and gas wells
(Arps, 1945; Fetkovich, 1980; Doublet et al., 1994; Fetkovich et al.,
1996; Agarwal et al., 1998). The purpose of a DCA is to generate a
forecast of future production rates and to determine the expected
ultimate recoverable reserves. Our proposed method also uses the
empirical models for prediction, but estimates the production data
in multiple realizations. That is, we approximate the dependent
variables in stochastic/parametric domain instead of the temporal
domain.

This paper is organized as follows: In Section 2, we introduce the
governing equations. In Section 3, we present the proposedmethod
using K-means clustering and empirical modeling. In Section 4, we
validate the method by comparing it to the MC simulation in two-
dimensional (2D) and three-dimensional (3D) examples under
different well control conditions. Section 5 discusses several issues
including different choices of empirical models, effect of the
number of clusters, etc. Finally, Section 6 draws the main
conclusions.

2. Governing equations

The steady-state, single-phase flow satisfies the following con-
tinuity equation (Bear, 1972)

V , ðruÞ¼ q (1)

where r is density, u is velocity, and q is the source/sink term.
Darcy's law for single-phase flow is

u¼ � k
m
ðVp� rgVzÞ (2)

where k is the absolute permeability, m is viscosity, p is pressure, g is
the gravitational acceleration, z is depth.

The waterflooding model can be expressed by the following
equation (Bear, 1972)

vðfraSaÞ
vt

¼ �V,ðrauaÞ þ qa; a ¼ w; o (3)
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where f is the porosity; and each phase has its own density ra,
saturation Sa, phase velocities ua, and source term qa. Darcy's law
for multiphase flow is

ua ¼ �kkra
ma

ðVPa � ragVzÞ; a ¼ w; o (4)

where kra, ma, and Pa are the relative permeability, viscosity, and
pressure for phase a, respectively. Eqs. (3) and (4) are usually
coupled with

Sw þ So ¼ 1
PcðSwÞ ¼ Po � Pw

(5)

where Pc is the capillary pressure; which is a function of Sw.
In geostatistics, the absolute permeability is considered as a

random field. Specifically, the ln-permeability is usually treated as a
stationary Gaussian random field with a mean and an exponential
covariance of (Dagan, 1989)

Clnkðx;x
0 Þ ¼ s2lnk exp

2
4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
x�x0

hx

�2
þ
�
y�y0

hy

�2
þ
�
z�z0

hz

�2
s 3

5
(6)

where s2lnk is the variance and h is the correlation length.
3. Methodology

3.1. K-means clustering

K-means clustering is an unsupervised machine learning
method for the classification of unlabeled data into groups and
determining cluster centers. One chooses the desired number of
clusters, and the K-means procedure iteratively moves the centers
to minimize the total within-cluster variance. Specifically, the cri-
terion is minimized by assigning the observations to the K clusters
in such a way that within each cluster the average dissimilarity of
the observations from the cluster mean, as defined by the points in
that cluster, is minimized (Hastie et al., 2009).

Consider a set of p-dimensional vector {xi}¼ {xi1, xi2,…, xip}, and
the dissimilarity measure follows the squared Euclidean distance

dðxi; xi0 Þ ¼
Xp
j¼1

�
xij � xi0j

�2 ¼kxi � xi0 k2 (7)

The objective is to find

argmin
1
2

XK
k¼1

X
CðiÞ¼k

X
Cði0Þ¼k

kxi�xi0 k2¼argmin
XK
k¼1

Nk

X
CðiÞ¼k

kxi�xkk2

(8)

where Nk is the number of points in cluster k, xk is the center of
cluster k, C(i)¼ k indicates xi belongs to cluster k. Given an initial set
of centers, the K-means algorithm alternates the two steps: (1) for
each center we identify the subset of training points (its cluster)
that is closer to it than any other center; (2) the means of each
feature for the data points in each cluster are computed, and this
mean vector becomes the new center for that cluster. These two
steps are iterated until convergence. Typically, the initial centers
are randomly chosen observations from the training data. Details of
the K-means procedure, as well as generalizations allowing for
different variable types and more general distance measures, are
given in Hastie et al. (2009).
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3.2. Empirical modeling

The DCA is a graphical procedure used for analyzing declining
production rates and forecasting future performance of oil and gas
wells. Fitting a line through the performance history and assuming
this same trend will continue in future forms the basis of the DCA
concept.

Our empirical modeling shares a similar idea and uses the
single-phase flow rate q as the independent variable rather than
time. That is, we approximate the dependent variables in stochas-
tic/parametric domain instead of the temporal domain. The idea is
based on the following thinking: the oil production rate qo in two-
phase flowcan be considered as a function of permeability and time
as qo ¼ qoðk;tÞ, assuming that the permeability k is a constant (e.g.,
in homogeneousmedia) for simplicity. The traditional DCA treats qo
as a function of time as qo ¼ qoðtÞ for a given realization of the
permeability field k. Similarly here, we may treat qo as a function of
permeability as qo ¼ qoðkÞ at a certain time t. In addition, we have
q ¼ qðkÞ from the single-phase flow simulation. Now we can relate
qo and q (via permeability k) as qo ¼ qoðqÞ at a certain time t. Note
that the Darcy's law states that the relationship between the
permeability and flow rate is a linear relation, in both single-phase
and multiphase flows. For example, if k is doubled, both q and qo
will be doubled. That is, qo will be linear/proportional to q, when k
varies. Herewe just use the oil production rate as an example, while
the water production rate or injection rate can be considered as
well.

The above analysis is based on ideal conditions (e.g., homoge-
neous media, linear relative permeability, neglecting capillarity and
gravity). Although these conditions may not be satisfied in
complicated examples, the linear relation between the rate of
single-phase flow and the rate of multiphase flow still plays a
dominant role. We will show in the case studies that this idea
actually works well in heterogeneous mediawith quadratic relative
permeability, considering capillarity and gravity.

In waterflooding applications, we are usually interested in the
water injection rate, oil and water production rates, as well as the
well bottom-hole pressure (BHP). Note that the total production
rate, which is the sum of oil rate and water rate (i.e., qt ¼ qo þ qw),
has a relatively linear relation with the single-phase rate q.
Therefore, we propose to approximate qt and the fractional flow fw,
and then use them to compute qo and qw.

To account for the nonlinear effect besides the dominant linear
relation (since the ideal conditions are not satisfied in general), a
quadratic function can be used for qt as

qt ¼ aq2 þ bqþ c (9)

where a, b and c are constant coefficients. Physically, for zero
capillarity, if q is 0, indicating vanishing connectivity (e.g., a barrier)
between the injector and the producer, and thus qt should be 0 as
well. Thus, the coefficient c should be 0. Note that if the injection
well is controlled by a fixed injection rate, then the well BHP can be
approximated by a quadratic function. To determine the above
coefficients, wemay use least-squares regression to solve this over-
determined problem, considering that it is a system of linear
equations.

As for the fractional flow fw, it can also be viewed as a function of
permeability and time as fw ¼ fwðk; tÞ. In a deterministic model
where the permeability k is fixed, fw ¼ fwðtÞ is 0 before water
breakthrough and monotonically increases with time afterwards.
Alternatively, we may view fw as a function of k, i.e., fw ¼ fwðkÞ, at
any given time. Then, considering the relation of q and k via single-
phase flow, fw can be expressed as fw ¼ fwðqÞ as well. Specifically, fw
remains 0 for a small q, increases as k grows after water
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breakthrough, and finally approaches 1 as q approaches infinity.We
thus propose to use the exponential function with truncation as

fw ¼
�
1� expð � bðq� aÞÞ; q> a
0; q � a

(10)

where a and b are constant coefficients that determine the shift and
curvature, respectively. Note that Eq. (10) is based on the
assumption that the water/oil mobility ratio is close to unity, under
which the single-phase flow rate becomes a good approximation of
the total rate in the two-phase flow. Since Eq. (10) is a nonlinear
equation, we may use the function “fminsearch” in MATLAB, which
finds the minimum of unconstrained multivariable function using
derivative-free method, to determine the coefficients a and b.

We remark that the analytical solution of fw exists for incom-
pressible two-phase flow in homogeneous media with negligible
capillary pressure effects and gravitational forces, which is the
well-known Buckley-Leverett theory. In particular, if the relative
permeability is concave upward (which is often the case), the
saturation profile will consist of a shock wave followed by a rare-
faction wave. Based on this, it seems that the empirical function for
fw should include a discontinuous section to mimic the shock front.
However, in reality, the saturation profile is usually smoothened
and continuous due to physical dispersion (e.g., caused by capil-
larity) and/or numerical dispersion (Lei et al., 2020). Therefore, the
continuous formula as in Eq. (10) is suggested.

Actually, we tested some other empirical models (e.g., cubic
function for qt, and reciprocal function for fw), and found that Eqs.
(9) and (10) are the best formulas in general. This is consistent with
the observations in DCA, where the exponential function is prob-
ably the most widely used decline curve model. More detailed
discussions for this issue are included in the case studies.

3.3. Proposed method

This study proposes a new approach for predicting the statistics
of waterflooding performance. The key idea is to combine a small
number of two-phase flow simulations (which is time consuming)
and a large number of single-phase flow simulations (which is
much faster). Specifically, we first randomly generate a large
number of realizations, perform single-phase flow simulations and
obtain the production rates. And we use the K-means clustering
technique to divide the realizations into a few groups, and choose
one representative realization in each group.We then perform two-
phase flow simulations on these representative realizations and
obtain the corresponding model responses including total pro-
duction rate and fractional flow. After that, we fit the empirical
models using responses data, which can be used to predict the
model responses in other realizations.

The complete algorithm is presented as below:

Algorithm 1. K-means clustering and empirical modeling

1 Randomly generate a large number of realizations (Eq. (6)).
2 Perform single-phase flow simulations on all realizations (Eq.

(1) and (2)).
3 Use K-means clustering and choose one representative in each

group (Eq. (8)).
4 Perform two-phase flow simulations on the representatives

(Eqs. (3)e(5)).
5 Fit the empirical models for pressure/total rate and fractional

flow (Eq. (9) and (10)).
6 Use the empirical models and single-phase solutions to predict

the two-phase solutions.

In this work, we use the MATLAB Reservoir Simulation Toolbox
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(MRST) (Lie, 2019) for the single-phase flow simulation and the
Schlumberger ECLIPSE simulator for the two-phase simulation. We
use the MATLAB build-in functions “kmeans” for K-means clus-
tering and “fminsearch” for curve fitting.
Fig. 2. Ten clusters from K-means clustering in the 2D test. The data points in ten
clusters are plotted by ten different markers and colors. The solid black circles indicate
the closest points to each cluster center.
4. Case studies

4.1. Base case

In this section, the idea and procedure of the proposed method
are illustrated by a 2D example in a quarter five-spot pattern. The
2D space of 600�600�20 ft3 is divided into 30�30�1 gridblocks,
with each 20�20�20 ft3. No-flow boundary condition is applied to
all bounds. The porosity is assumed constant at 0.15. The absolute
ln-permeability (in mD) is a stationary Gaussian random field with
a mean of 3.0, and a variance of 1.0. The spatial correlation follows
an exponential covariance function with the correlation lengths of
60 ft and 120 ft in the x- and y-directions, respectively. The Corey-
type relative permeabilities are represented by quadratic functions

as krw ¼ S2e and kro ¼ ð1� SeÞ2, where, Se is the effective saturation,
Se ¼ ðSw � SwiÞ=ð1 � Sor � SwiÞ, where Swi is the irreducible water
saturation and Sor is the residual oil saturation. The following values
are used in this study: Swi ¼ 0:2, Sor ¼ 0:3. The capillary effect is
neglected in this case (Case 1). There is one injector and one pro-
ducer, controlled by fixed BHPs at 5000 psia and 3000 psia,
respectively. The locations of the wells are shown in Fig. 1, which
also illustrates one realization of the ln-permeability field
randomly generated using geostatistics.

In the traditional MC method, we randomly generate 1000 re-
alizations of the ln-permeability field and perform waterflooding
simulations for each of them up to 500 days. Thus, we have 1000
samples of model responses (e.g., water injection rate, oil produc-
tion rate and water production rate).

In our proposed method, we first run the single-phase simula-
tion for the 1000 realizations and obtain the injection and pro-
duction rates. These two rates are then clustered using the K-means
clustering as shown in Fig. 2. In this synthetic example, the injec-
tion rate and production rate (in single-phase flow) are exactly the
same, owing tomass balance. Therefore, the data points in Fig. 2 fall
on a straight line. We set a number of clusters (10 in this study), and
Fig. 1. One realization of ln-permeability (in mD) field in the 2D test. The triangle
indicates injector, and the circle indicates producer.
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in each cluster, one point that is closest to the cluster center is
selected to represent the cluster center. Hence, these 10 points (i.e.,
10 realizations) serve as representatives in the following analysis.

We then perform waterflooding simulation for these 10 re-
alizations and thus have 10 samples of model responses. Fig. 3a
shows the total production rate qt at time t ¼ 200 days. The green
dots are from 1000MC simulations. The red circles are the 10 points
selected from clustering. The blue curve is the quadratic function
from curve fitting using the 10 points. Note that the total produc-
tion rate qt should be zero if the single-phase production rate q is
zero, based on physics, and thus the intercept in the quadratic
function is set to be zero. In addition, qt is different from q (even for
the same field as in this test) mainly because of the relative
permeability and heterogeneity. Specifically, as the sum of relative
permeabilities is no greater than one, qt would be smaller than q in
general. Fig. 3b shows the fractional flow fw at time t ¼ 200 days.
The 10 points are fitted using an exponential function. We can see
that the fitted curves match the exact responses quite well. Once
the fitted curves are determined (i.e., the coefficients are solved
from regression), we may use them as proxy models to generate
1000 samples of the responses conveniently.

For each time step, the above process is implemented, until we
obtain all required data samples. Now we have the model response
samples in all time steps, and can easily estimate their statistics. It is
customary in the petroleum industry to describe the uncertainty in
terms of P10, P50 and P90, where the “P” stands for percentile. For
example, P10 means that 10% of the calculated estimates will be no
greater than the P10 estimate. Usually, P10 indicates the low esti-
mate, P50 (i.e., median) indicates the best estimate, and P90 in-
dicates the high estimate. Fig. 4 shows these results for the total
production rate and the fractional flow. The black solid lines are
from 1000 MC (two-phase flow) simulations and considered as the
exact results. The red dash-dotted lines are from 10 MC (two-phase
flow) simulations for comparison. The blue dashed lines are from
our proposed method, i.e., using 10 (two-phase flow) simulations
and 1000 (single-phase flow) simulations. We can see that the re-
sults from our proposed method generally agrees well with the



Fig. 3. Empirical models and curve fitting: (a) total production rate in waterflooding as a function of single-phase production rate, fitted by a quadratic function; and (b) fractional
flow in waterflooding as a function of single-phase production rate, fitted by an exponential function with truncation.

Fig. 4. Exact and estimated P10, P50 and P90: (a) total production rate; and (b) fractional flow.
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exact results, and is much better than those from the MC method
with 10 simulations.

Usually we are more interested in the oil and water rates than
the total rate and fractional flow, since the formers have better
practical meanings in real applications. Actually, the latter ones can
be computed easily from the former ones as qo ¼ qt � fw and qw ¼
qt � ð1 � fwÞ. Their results are depicted in Fig. 5. We can see that
the MC method with 10 simulations clearly underestimates the
variabilities, whereas the proposed method performs reasonably
well.

We remark that the qw line of P10 in Fig. 5b is close to 0, till the
end of simulation. It is indeed true that the qw values remain un-
changed in around 100 realizations. While in Fig. 5a, the qo line of
P10 still decreases, mainly due to the relative permeability. Since

the quadratic functions krw ¼ S2e and kro ¼ ð1� SeÞ2 are used in this
study, krw þ kro � 1. Considering that initially the oil saturation
reaches maximum and then gradually decreases, the total flow rate
1143
qt will decrease as well. Therefore, even qw remains zero, qo will still
generally decrease with time.

To further analyze the distribution of oil and water rates, we
compare the cumulative density functions (CDFs). Fig. 6 reveals the
results at time t ¼ 200 days. The red lines behave in a zig-zag
manner since there are only 10 samples in the MC method. In
comparison, the blue lines almost overlap the black lines, indicating
a high accuracy of the proposed method.
4.2. Effect of capillarity

To analyze the effect of capillarity, we test another case (Case 2).
Consider the capillary pressure as Pc ¼ 1=Se � 1=ð1� SeÞ shown in
Fig. 7. Other conditions are the samewith those in Case 1 above. We
even use the same ensemble of 1000 realizations. In general, the
results are very close to those in Case 1. For example, the P10, P50
and P90 of the total production rate and fractional floware depicted



Fig. 5. Exact and estimated P10, P50 and P90: (a) oil production rate; and (b) water production rate.

Fig. 6. Exact and estimated cumulative density function (CDF): (a) oil production rate; and (b) water production rate.
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in Fig. 8, which is similar to Fig. 4. To quantitatively compare the
differences in Case 1 and Case 2, we compute the errors of themean
and standard deviation in a relative error sense as

relative error of y¼
P
t

��yestimate
t � yexactt

��
P
t

��yexactt

�� (11)

where the summation w.r.t. t is to account for all time steps. The
results for the proposed method are illustrated in Table 1, consid-
ering the MC method with 1000 realizations as the exact reference.
It is seen that the proposed method is at the same level of accuracy
in Case 2 (with capillarity) as in Case 1 (without capillarity).
4.3. Effects of heterogeneity, variability and mobility ratio

We then compare the results from the proposedmethod and the
MC method under various conditions, including heterogeneity,
1144
variability, and mobility ratio (Table 1). We consider Case 1 as the
base case, and change the parameters one at a time, to investigate 6
difference case (Cases 3e8). Specifically, the correlation lengths are
changed in Cases 3 and 4; the variance of log-permeability is
changed in Cases 5 and 6; and themobility ratio is changed in Cases
7 and 8.

The errors of the mean and standard deviation of the total
production rate qt and fractional flow fw are summarized. It can be
seen that the proposed method is mostly affected by the mobility
ratio, but not affectedmuch by the heterogeneity or variability. This
can be explained as the proposed method assumes that the mainly
features of the two-phase flow can be captured by the single-phase
flow, and thus works better when the mobility ratio is close to
unity. In most reservoir situations, water viscosity is lower than oil
viscosity, making the viscosity ratio unfavorable for water to
displace oil efficiently. However, the relative permeability of water
at residual oil saturation could be lower by a factor of two to eight
than that of oil at connate-water saturation. Hence, for many res-
ervoirs, the mobility ratio is close to unity if the oil viscosity is



Fig. 7. Capillary pressure as a function of water saturation.

Fig. 8. Exact and estimated P10, P50 and P90 in Case 2 with ca

Table 1
Relative error of the mean and standard deviation of the total production rate qt and fra

Case Input parameters Error and devi
%

Pc hx/Lx hy/Ly Variance M < qt > s

1 N 0.1 0.2 1 1 0.60 3
2 Y 0.1 0.2 1 1 0.62 2
3 N 0.033 0.067 1 1 1.09 2
4 N 0.3 0.6 1 1 4.45 2
5 N 0.1 0.2 0.3 1 1.57 4
6 N 0.1 0.2 3 1 4.47 1
7 N 0.1 0.2 1 0.25 2.62 1
8 N 0.1 0.2 1 4 2.65 8

Note: Pc is capillary pressure (Y/N means included or not), h is correlation length, variance
estimation, s indicates standard deviation.
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greater than the water viscosity at reservoir conditions by a factor
of five or so. In general, we can see that the proposed method is
more accurate than the traditional MC method with the same
amount of computational cost.

4.4. Channelized system

In this section, the proposed method is tested using a more
challenging/realistic geo-statistical model: a channelized system.
We use the open source Stanford Geostatistical Modeling Software
(SGeMS) for the application of multi-point geostatistics. Fig. 9a
displays the widely-used training image, which is defined on a
250 � 250 grids and characterizes the geological features (spatial
correlation structure) and thus the multipoint statistics. A total of
1000 conditional SGeMS realizations are generated using the single
normal equation simulation (SNESIM) algorithm (Strebelle, 2002).
Fig. 9b shows four realizations and each contains 50� 50 grids. The
red and blue colors correspond to sand (k ¼ 100 mD) and mud
(k ¼ 1 mD) facies, respectively. There are two injection wells and
three production wells, whose locations are indicated in Fig. 9b. All
realizations are not conditioned to hard data at thesewell locations,
thus high uncertainty in the production data is expected. The other
conditions are the same as in the base case in Section 4.1.

Fig. 10 displays the P10, P50 and P90 responses for oil and water
production rates at well P1 obtained from the proposed model and
MC method. Significant differences between the reference (in
pillarity: (a) total production rate; and (b) fractional flow.

ctional flow fw in Cases 1e8.

ation of the proposed method, Error and deviation of Monte Carlo, %

(qt) < fw > s(fw) < qt > s(qt) < fw > s(fw)

.69 1.94 4.58 6.81 4.08 10.83 27.56

.85 5.39 8.53 13.43 4.08 17.90 25.77

.30 4.02 6.39 6.54 5.72 6.06 21.96

.61 3.95 9.68 22.76 26.61 20.39 19.46

.82 0.47 11.83 4.30 4.64 4.69 24.81

.49 6.27 7.96 11.27 29.89 7.72 11.76
0.99 12.50 10.24 4.58 28.75 12.81 40.25
.87 3.39 33.46 2.24 46.01 8.60 47.47

refers to the log-permeability random field,M is mobility ratio, <∙> indicates mean



Fig. 9. Illustration of channelized reservoirs: (a) training image; and (b) 4 randomly generated realizations.

Fig. 10. Exact and estimated P10, P50 and P90 in the channelized field case: (a) oil production rate at well P1; and (b) water production rate at well P1.
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black) and the MC method with 10 simulations (in red) are evident
for this challenging case, especially for the P90 estimations. These
discrepancies are mainly because the channel connectivity in all
1000 realizations cannot be captured by only 10 simulations, and
the fact that the wells in these simulations are under BHP control. It
appears that the P10 and P50 lines are close to zero, since their
values are too small compared to P90 values, which is also validated
by the CDF curves as shown in Fig. 11. The proposed method,
however, is found to be consistent with the reference in both
figures.

4.5. Three-dimensional test

In this section, the proposed method will be tested in a more
complicated 3D example with five wells. Consider a space of
820�820�20 ft3 is divided into 41�41�10 gridblocks, with each
20�20�2 ft3. The porosity is assumed constant at 0.2. No-flow
boundary condition is applied to all bounds. The absolute ln-
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permeability (in mD) is a stationary Gaussian random field with a
mean of 3.0, and a variance of 1.0. The spatial correlation follows an
exponential covariance function with the correlation lengths of
100, 50, and 4 ft in the x-, y- and z-directions, respectively. The
same relative permeabilities as in the 2D example are used here,
and the capillarity is neglected. There is one injector in the center
controlled by an injection rate of 1000 STB/day, and four producers
all controlled by BHPs of 2000 psia. All wells penetrate 10 layers.
Fig. 12 illustrates one realization of the ln-permeability field
randomly generated using geostatistics, with the well locations.

In the MC method, we still generate 1000 realizations of the ln-
permeability field randomly, and perform waterflooding simula-
tions for each of them up to 600 days. We hence have 1000 samples
of model responses, including injection well BHP and production
rates.

In our proposed method, we also run the single-phase simula-
tion for the 1000 realizations and obtain the injectionwell BHP and
the rates at four production wells. These five responses are then



Fig. 11. Exact and estimated cumulative density function (CDF) in the channelized field case: (a) oil production rate at well P1; and (b) water production rate at well P1.

Fig. 12. One realization of ln-permeability (in mD) field in the 3D test. The triangle
indicates injector, and the circles indicate four producers.

Fig. 13. Ten clusters from K-means clustering in the 3D test. The data points in ten
clusters are plotted by ten different markers and colors. The solid black circles indicate
the closest points to each cluster center.
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clustered using the K-means clustering as shown in Fig. 13. In this
example, the injection rate is fixed, and thus the summation of the
four production rates is fixed. Therefore, there are 5 � 1 ¼ 4 inde-
pendent variables (including injection well BHP). Although the
clustering result cannot be shown in a 4D space, it can be partially
illustrated in a 2D space (with two independent variables, e.g.,
production rates at P1 and P2). Note that the variables have to be
normalized (by their individual standard deviations) to make them
equally weighted before clustering. We still use 10 clusters, and
select 10 points/realizations as representatives in the following
analysis.

Fig. 14 shows the empirical models and curve fitting for well P1
at time t ¼ 200 days. While the total production rate is reproduced
accurately by a quadratic function, there are some mismatches in
the fractional flow, especially when the fractional flow is close to
zero. This is because the data points are more clustered (due to
multiple production wells) than those in the 2D example. After
using empirical functions to fit the data, we may generate a large
number of samples readily, from which the model output statistics
can be calculated. Fig. 15 presents the P10, P50 and P90 for the oil
1147
and water production rates. The injected pore volume is larger in
this 3D example than in the 2D example, and hence the oil rate is
reduced to a lower level. The variance of the production rates is
smaller than those in the 2D example, mainly because the injection
well control condition is changed from constant BHP to constant
injection rate. The other three production wells perform similarly
and thus will not be shown repeatedly.

Different choices of empirical models may affect the accuracy of
prediction. For the estimation of the multiphase flow rate or BHP
using the single-phase flow rate, the dominant feature is a linear
relation, as shown in Figs. 3a, 14a and 16. Therefore, a quadratic
function performs very well in approximating the model responses
(at both injection and productionwells). However, for the fractional
flow or water cut, its behavior is more complicated and highly
nonlinear, as shown in Figs. 3b and 14b. Similar to the DCA, inwhich



Fig. 14. Empirical models and curve fitting at well P1: (a) total production rate as a function of single-phase production rate, fitted by a quadratic function; and (b) fractional flow as
a function of single-phase production rate, fitted by an exponential function with truncation.

Fig. 15. Exact and estimated P10, P50 and P90 at well P1: (a) oil production rate; and (b) water production rate.
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there are three types of declines (i.e., exponential, hyperbolic and
harmonic), we have three choices here as well. The main difference
is that: the fractional flow for water is increasing here rather than
decreasing as in the DCA. Specifically, both the exponential function
(similar to the exponential decline) and the reciprocal function
(similar to the harmonic decline) seem to work adequately, but the
exponential function appears to be slightly better than the recip-
rocal function in general cases. The third choice (similar to the
hyperbolic decline) is also tested, but is found to be inaccurate
(detailed results are not shown due to limited space), mainly
because it contains an additional unknown coefficient, considering
the limited number of data points. That is, the result is more likely
to be unstable when determining three unknowns by fitting ten
data points, compared to two unknowns in the exponential or
reciprocal function.

For the injection well, since the water injection rate is fixed, we
compare the BHPs from three approaches. The relation between the
single-phase BHP and two-phase BHP should be close to linear
relation according to Darcy's law. The quadratic function is used as
1148
the empirical model andworks very well, as shown in Fig.16. Fig.17
reveals the P10, P50 and P90, as well as the CDF of the injectionwell
BHP (at t ¼ 200 days). A nice agreement between the exact values
and the proposed results is observed in all these plots. In contrast,
the MC method with 10 realizations generally underestimate the
variability of the model outputs. This can be explained as when the
number of samples is too small, it is difficult for the MC method to
“hit” the sample that is far from the mean.

Lastly, we compare the CPU time (on the Intel Core i7-6700K
CPU @ 4 GHz): the traditional MC method with 1000 realizations
takes 203 min, whereas the proposed method takes 222 s,
including 87 s for 10 two-phase flow simulations and 135 s for 1000
single-phase flow simulations, which is about 55 times faster than
the MC method in the computational cost. We remark that it is
indeed true that the 10 two-phase simulations took 87 s (8.7 s for
each on average), while the 1000 simulations took 203 min
(0.2 min ¼ 12 s for each on average). Although it appears that the
CPU time for two-phase flow simulations is not stable, this is
actually because the computational cost is related to the



Fig. 16. Empirical models and curve fitting at well I1: bottom-hole pressure (in two-
phase model) as a function of bottom-hole pressure (in single-phase model), fitted
by a quadratic function.
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convergence rate, which is affected by the heterogeneity of the
random field. In general, if the domain is more heterogeneous, it
takes more time in simulation. Therefore, considering that these 10
simulations are so selected that present the cluster centers, their
average CPU cost will be smaller than that from all 1000 random
realizations, as can be seen from Fig. 13 (q can be viewed as a
heterogeneity indicator).
4.6. SPE10 large-scale test

In order to test the proposed method in more complex geolog-
ical models with higher simulation costs, we adopt the SPE10
benchmark project (Christie and Blunt, 2001), which is widely
employed for reservoir simulation. The fine-scale geological model
is described on a regular Cartesian grid, with a domain size of
1200�2200�170 ft3. It has 60�220�85 cells, and each size is
Fig. 17. Exact and estimated values of bottom-hole pressure at well I1:
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20�10�2 ft3. The top 35 layers exhibit Gaussianity in log-
permeability data, whereas the bottom 50 layers are channelized.
In this study, we select the top 10 layers. Since the type of covari-
ance function is not known, we performed variogram analysis, and
found that the spherical covariance provides the best fit with the
parameters as: s2y ¼ 5:0, hx ¼ 600 ft, hy ¼ 600 ft, and hz ¼ 10 ft. We
set 2 injectors at constant BHP of 8000 psia and 13 producers at
constant BHP of 4000 psia (as two nine-spot patterns), penetrating
all 10 layers, as shown in Fig. 18. This benchmark project is well-
known for its extremely large variance in the permeability field
(about 6 orders of magnitude), as can be seen in Fig. 18. Other in-
formation is as described in Christie and Blunt (2001). The simu-
lation is performed up to 2000 days.

Fig. 19 depicts the field oil and water production rates. We can
see that the proposed method using 16 clusters/representatives
match the reference with 800 simulations well, but the MCmethod
with 16 simulations clearly deviate from the exact results. In this
test, we used a 16-core Intel Xeon processor for parallelization, and
each two-phase flow simulation takes about 10 min, while the
single-phase flow simulation become negligible in computational
time. Therefore, the proposed method using 16 clusters requires
roughly 10 min. On the other hand, the exact results using 800
simulations require 10 h, even with parallelization, which is about
60 times slower than the proposed method.

We also test the effect of the number of clusters. If we use five
clusters, the underdetermined problem (data points are not enough
to determine the fitting parameters) will be likely to appear,
although its performance is still better than the traditional MC
method. If we use many clusters (e.g., over a hundred), the pro-
posed method will be more accurate but limited by the empirical
models, and thus may lose advantage over the traditional MC
method. We remark that the well control conditions should be
fairly stable when using this method, otherwise, the empirical
model may not be appropriate, which is the same as in the DCA.

We remark that the results from a small sample of MC simula-
tions underestimates oil and water production rates in the above
case studies. Actually, this underestimation is not always true, and
overestimation is also possible as we have seen in some cases.
However, underestimation is indeed more likely to appear than
overestimation. This is because the production rate is essentially
proportional to permeability, and permeability is log-normally
distributed (right-skewed). Considering that the samples are
(a) P10, P50 and P90; and (b) cumulative density function (CDF).



Fig. 18. Illustration of 4 randomly generated realizations of permeability (in mD) field in the in the SPE10 case: (a) K realization 1; (b) K realization 2; (c) K realization 3; and (d) K
realization 4. “I” indicates injector, and “P” indicates producer.

Fig. 19. Exact and estimated values of field production rates: (a) oil rate; and (b) water rate.
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randomly generated from a right-skewed distribution, the mean of
these samples is likely to be lower than the exact mean value.

5. Discussion

The proposed method is related to the concept of reduced-order
modeling (Benner et al., 2015; Li et al., 2021), which involves sim-
plifications of high-fidelity, complex models by capturing a sys-
tem's dominant behavior and effects using minimal computational
resources. In general, reduced-order modeling via surrogate
models can be categorizes into two different classes: data-fit
models and physics-based models. Data-fit models include
response surface methods (e.g., polynomial, radial basis function
and kriging, etc.) that use interpolation or regression to fit a proxy
model for the system output as a function of the input parameters.
Physics-based models derive hierarchical surrogates from high-
fidelity models by, e.g., simplifying physics assumptions (Wilson
and Durlofsky, 2013) and using coarser grids (Durlofsky, 1991),
aiming for reduced computational cost (and possibly lower accu-
racy). Our proposed method can be viewed as a reduced-physics
modeling, where the single-phase flow solutions are utilized to
approximate the multiphase flow solutions. As far as we know, this
idea has not been proposed before.

For the single-phase flow simulation, we may use either water
or oil, as long as the fluid is slightly compressible, since it is the
relative value that matters instead of the absolute value, consid-
ering that the single-phase solution is just used for fitting/inter-
polation. Strictly speaking, using a transient state instead of a
steady state in the single-phase flow simulation would provide
better results, since the former is closer to the multi-phase flow
(which is also transient) than the latter. However, the improvement
is not significant in general cases. Considering that the computa-
tional cost is also increased if the transient state is used, we suggest
using the steady state for single-phase flow simulations.

We are currently investigating possible extensions, e.g., black-oil
models, inverse problems (Neuman et al., 2012; Xue and Zhang,
2014; Dai et al., 2016; Liao et al., 2019a), and other unsupervised
learning approaches (Amir et al., 2020; Sun and Zhang, 2020). This
method can also be combined with the upscaling methods (Liao
et al., 2019b, 2020) for even higher efficiency.

6. Conclusions

A new approach, K-means clustering assisted empirical
modeling, is presented for efficiently estimating waterflooding
performance for multiple geological realizations. In this approach,
the two-phase flow problems are numerically calculated for a small
portion of realizations selected by the K-means clustering. For the
majority of realizations, only the single-phase flow problems are
solved. The empirical models are then used to relate the single-
phase solutions and the two-phase solutions on these small
portion of realizations. Finally, the two-phase solutions in other
realizations can be predicted using the empirical models.

The proposed method is easy to understand and implement. It
aims to achieve agreement at the ensemble level between the
single-phase and two-phase flow simulationmodels, as can be seen
from the P10, P50 and P90 results. Actually, it also performs well in
the realization-by-realization agreement, indicated by the cumu-
lative density function comparisons. The method is applied to both
2D and 3D synthetic models, and channelized reservoir and SPE10
benchmark test, with or without capillarity, considering different
number of wells and control conditions, as well as the effect of
heterogeneity, variance of log-permeability and mobility ratio. It is
found that the proposed method is best for unit mobility ratio, and
it consistently improves the Monte Carlo (MC) predictions with a
1151
few simulations and is able to capture the ensemble statistics of the
MC results with a large number of realizations, while the compu-
tational cost is significantly reduced.
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