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a b s t r a c t

Least-squares reverse-time migration (LSRTM) formulates reverse-time migration (RTM) in the least-
squares inversion framework to obtain the optimal reflectivity image. It can generate images with
more accurate amplitudes, higher resolution, and fewer artifacts than RTM. However, three problems still
exist: (1) inversion can be dominated by strong events in the residual; (2) low-wavenumber artifacts in
the gradient affect convergence speed and imaging results; (3) high-wavenumber noise is also amplified
as iteration increases. To solve these three problems, we have improved LSRTM: firstly, we use Huber-
norm as the objective function to emphasize the weak reflectors during the inversion; secondly, we
adapt the de-primary imaging condition to remove the low-wavenumber artifacts above strong reflectors
as well as the false high-wavenumber reflectors in the gradient; thirdly, we apply the L1-norm sparse
constraint in the curvelet-domain as the regularization term to suppress the high-wavenumber migra-
tion noise. As the new inversion objective function contains the non-smooth L1-norm, we use a modified
iterative soft thresholding (IST) method to update along the Polak-Ribi�ere conjugate-gradient direction
by using a preconditioned non-linear conjugate-gradient (PNCG) method. The numerical examples,
especially the Sigsbee2A model, demonstrate that the Huber inversion-based RTM can generate high-
quality images by mitigating migration artifacts and improving the contribution of weak reflection
events.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Seismic migration is a key technology in seismic data process-
ing. It can image the subsurface structures by restoring the reflec-
tion events recorded on the surface to the true underground
location. To obtain high-quality subsurface images, migration im-
aging technologies have evolved from ray-based Kirchhoff migra-
tion (Keho and Beydoun, 1988; Schneider, 1978) to Gaussian beam
migration (Hill, 1990, 2001; Bai et al., 2019; Zhang et al., 2019), and
from one-way wave-equation based migration (Claerbout, 1971;
Claerbout and Doherty, 1972; Gazdag, 1978) to reverse-time
migration (RTM), which is based on two-way wave equation
y Elsevier B.V. on behalf of KeAi Co
(Baysal et al., 1983; McMechan, 1983; Whitmore, 1983; Xu et al.,
2011; Shi et al., 2019; Zhao et al., 2021). At present, RTM is one of
the most popular migration methods for imaging models with
complex structures. The reason is that RTM employs the two-way
wave equation; therefore, it can handle steeply dipping struc-
tures, adapt to strong velocity variation, accurately migrate all
frequencies and deal with complex waves, such as prism waves
(Zhang et al., 2011).

However, instead of inverse operators, RTM still applies adjoint
operators that only preserve the kinematics of the seismic image
correctly, resulting in inaccurate amplitudes and degraded resolu-
tion (Etgen et al., 2009). Especially, in cases of significant aliasing,
truncation, noise, and incomplete seismic data, the adjoint of the
modeling operators approximate the inverse operators roughly
(Claerbout and Karrenbach, 1992). In such cases, even with an
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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accurate migration velocity model, the image quality of RTM is still
affected.

To further improve the quality, RTM is formulated in the least-
squares inversion framework to produce the optimal reflectivity
image, which is referred to as least-squares reverse-time migration
(LSRTM) (Dai and Schuster, 2013; Liu et al., 2013; Zhang et al., 2015;
Yao and Jakubowicz, 2016; Yang et al., 2019b; Hu et al., 2021; Wang
et al., 2021). LSRTM can generate images with more balanced am-
plitudes, higher resolution, and fewer artifacts caused by missing
data, truncation, noise, and operator mismatch than conventional
RTM, thanks to the inverse operator applied by LSRTM (Yao andWu,
2015; Wang and Wang, 2017; Yang et al., 2019a; Guo and Wang,
2020; Liu et al., 2020). LSRTM could also include anisotropy (e.g.,
Qu et al., 2017), attenuation (e.g., Qu and Li, 2019), elasticity (e.g.,
Fang et al., 2019; Gu et al., 2019), and multiples (e.g., Qu et al., 2021;
Zhang et al., 2021) for honoring the physics more accurate.

However, conventional LSRTM utilizes L2-norm as the objective
function. Consequently, the inversion is dominated by strong
seismic events or other outliers in recorded data. For instance, the
events originating from the boundary of salt bodies are much
stronger than the events from the interfaces of sedimentary strata
under the salt bodies. These strong events dominate the whole
inversion process of LSRTM, resulting in an inadequate update to
the region under the salt domes.

The second weakness of conventional LSRTM is that it still uses
the zero-lag cross-correlation imaging condition, which generates
the low-wavenumber migration artifacts, especially above strong
reflectors, due to the two-way wave equations employed. In addi-
tion, the zero-lag cross-correlation imaging condition also gener-
ates false high-wavenumber reflectors in geologically complex
areas (Fei et al., 2010). Although conventional LSRTM can suppress
the low-wavenumber migration artifacts to some degree through
the fitting process, this will affect the convergence speed of inver-
sion in the early iterations.

The wavefield decomposition method is a popular choice to
mitigate the low-wavenumber migration artifacts. Liu et al. (2011)
proposed an efficient wavefield decomposition method to sup-
press low-wavenumber migration artifacts in the RTM images. Fei
et al. (2015) proposed the de-primary imaging condition to
further improve the effectiveness of imaging. Except for suppress-
ing low-wavenumber migration artifacts, this imaging condition
can also eliminate false high-wavenumber reflectors. Kim et al.
(2019) used the de-primary imaging condition in LSRTM and uti-
lized a preconditioned linear conjugate-gradient method (PLCG) for
inversion. However, the migration operator is no longer the adjoint
of the modeling operator as the de-primary imaging condition
changes the gradient of LSRTM. This method slows down the
convergence of inversion. To mitigate this problem, they used the
de-primary imaging condition only at early iterations, and then
switched to the zero-lag cross-correlation imaging. However, the
later iterations with the zero-lag cross-correlation imaging condi-
tion still introduce low-wavenumber artifacts again.

Thirdly, the inversion process of conventional LSRTM also pro-
duces high-wavenumber noise to overfit the record because of the
ill-conditioning nature of geophysics problems as well as the
modeling engine that only simulates the record partially (Trad,
2020). To solve this problem, L1-norm sparse constraints are
incorporated into LSRTM to penalize the high-wavenumber
migration noise and reduce the sidelobes around the reflectors
(Lin and Lian, 2015;Wu et al., 2016; Dutta, 2017; Li et al., 2017). This
method suppresses the artifacts and also the weak reflectors. Li
et al. (2020) further implemented the L1-norm sparse constraint
in the wavelet domain. It can perform multi-scale and angle anal-
ysis, so it can protect weak signals better while removing noise.

In this paper, we propose a new strategy to achieve LSRTM for
1543
solving these problems illustrated above. Firstly, we employ a
Huber norm (Huber, 1964) as the objective function of the inver-
sion. Thus, the inversion acts as L1-norm inversion for large re-
siduals but as L2-norm inversion for small residuals. Consequently,
it is strongly convex when close to the minimum and less steep for
large residuals. Thus, this can mitigate the problem: large residuals
dominate the inversion of LSRTM. Since the inversion is not based
on L2-norm only, we call it Huber inversion-based RTM instead of
LSRTM. Secondly, the de-primary imaging condition is employed to
formulate the gradient instead of the zero-lag cross-correlation
imaging condition, which causes both low-wavenumber artifacts
and high-wavenumber false reflectors. Finally, we use the L1-norm
sparse constraint in the curvelet-domain as the regularization term
to remove high-wavenumber noise. The reason is that the curvelet
transform can sparsely represent images at multiple scales and
angles, and has a stronger ability to express edge information than
other transforms, such as wavelet transform (Cand�es and Guo,
2002). As the proposed Huber inversion-based RTM contains a
non-smooth L1-norm, we utilize an improved iterative soft
thresholding (IST), which is updated along the Polak-Ribi�ere
conjugate-gradient direction by using a preconditioned non-linear
conjugate-gradient (PNCG) method. The numerical examples,
especially the Sigsbee2A model, demonstrate that our proposed
method can improve the image quality and show more structural
details in poorly illuminated areas.

In the following chapters, firstly, we introduce the theory of
Huber inversion-based RTM with the curvelet-domain constraint.
Secondly, numerical examples are presented to prove the effec-
tiveness of the proposed method. Before the conclusion, we discuss
the convergence of all these RTM methods, the effectiveness of the
curvelet-domain sparse constraint for noise suppression with
Huber inversion-based RTM, and the influence of velocity accuracy
on inversion-based RTM methods.
2. Method

2.1. Huber inversion-based reverse-time migration with curvelet-
domain constraint

Least-square reverse-timemigration (LSRTM) generally uses the
L2-norm objective function.

4L2 ¼
1
2
kd� dobsk22 (1)

where d denotes the predicted data and dobs represents the
observed data. Note that a boldface letter in an equation represents
the vector form of a variable, whereas a normal letter is for its scalar
form in the whole paper. The L2-norm objective function is
particularly efficient for reflection events that have similar ampli-
tudes from sedimentary rocks. However, if models include large
contrast in geological bodies, e.g. salt bodies, then an objective
function which emphasizes more on weak events is expected. Be-
sides, a constraint should be incorporated into the migration
inversion system to suppress high-wavenumber noise generated by
the inversion process. By considering the two points, we combine
the Huber norm and the curvelet-domain constraint as the objec-
tive function

4 ¼ 4H þ lC�1kCmk1 (2)

where 4H denotes the Huber norm, l is the regularization (trade-
off) parameter, m represents the reflectivity model, k,k1 denotes
L1-norm, Cð ,Þ and C�1ð ,Þ stand for the forward and inverse cur-
velet transforms, respectively. At present, there are two most
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commonly used fast discrete curvelet transforms (Cand�es and
Donoho, 2004): USFFT (unequally spaced fast Fourier transform)
algorithm and Wrapping-based transform algorithm. In this paper,
we use the USFFT algorithm, the code of which can be downloaded
from the website (http://www.curvelet.org/), to realize the discrete
curvelet transform.

In this paper, we choose a pseudo-Huber loss function
(Charbonnier et al., 1997) to replace the L2-norm objective function

4H ¼ d2
X
i

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

��
di � diobs

�.
d
�2r

� 1

!
(3)

where di and diobs represents the ith element of d and dobs,
respectively, and d is the threshold of Huber-norm. An advantage of
the pseudo-Huber norm over the pice-wise Huber norm is that its
gradient is continuous for all values, which is convenient for
implementing gradient-based inversion methods. We choose half
the maximum value of the residual, i.e. data misfit di � diobs, as d in
each iteration. Therefore, when the residual is large, the Huber
norm acts like L1-norm; otherwise, it acts like L2-norm. Since the
residual shrinks as inversion progresses, d decreases during inver-
sion. Reducing d as inversion progresses is an effective strategy in
optimization called “cooling”. In the early iterations, the value of d
is relatively large, therefore, strong events converge quickly. As
inversion progresses, reducing d increases the contribution of weak
signals in the objective function and avoids strong events
continuing to dominate the updating direction of the model. Note
that d in the pseudo-Huber norm is slightly larger than the tran-
sition point between the two norms. This is illustrated by Fig. 1.

The mapping relationship between predicted data and reflec-
tivity is essential for minimizing the objective function. Generally,
there are two simulation methods for predicted data: one is based
on Born approximation, and the other is based on Kirchhoff
approximation (Jaramillo and Bleistein, 1999; Bleistein et al., 2005).
In this paper, we used the Kirchhoff approximation:

dðxr;u; xsÞ ¼ iu
X
x
Grðxrjx;uÞmðxÞGsðxjxs;uÞsðuÞ (4)

where s is the source wavelet, mðxÞ represents the stacked reflec-
tivity image, Gsðxjxs;uÞ is the Green's function from the source
point xs to the reflection point x, Grðxrjx;uÞ is the Green's function
from the reflection point x to the receiver point xr, and iu gives a
90� phase shift to the simulated data, which is essential for zero-
phase imaging. The zero-phase imaging with Kirchhoff approxi-
mation matches the images of conventional migration methods,
such as Kirchhoff migration. By contrast, imaging with Born
approximation gives 90� phase rotation compared with the images
produced with conventional migration methods. A more detailed
Fig. 1. A sketch of the pseudo-Huber loss function (blue, d ¼ 1) and the L2-norm lo
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derivation and implementation of the forward model operator in
Eq. (4) can be found in Yao et al. (2018).

Eqs. (2)-(4) constitute the inversion system used in this paper.
To minimize the function in Eq. (2), we employ the iterative soft
thresholding (IST) method, which is an effective approach to
minimizing the mixed norm problems. IST is a special type of the
proximal method, which solves a general optimization problem

min 4ðmÞ þ hðmÞ (5)

iteratively with

mi ¼ proxaih

�
mi�1 � aiV4

�
mi�1

��
(6)

where 4ðmÞ is a smooth function, e.g. 4H, hðmÞ is a convex function

but not differentiable everywhere, e.g. lC�1kCmk1, a represents the
step-length, i indicates the iteration number, and proxð ,Þ is called
the proximity operator and is the soft thresholding operator for IST
(Neal and Stephen, 2014). Originally, the proximal method updates

the model along the gradient direction, i.e. v4H
vmðxÞ. We found a fast

convergence way for IST is to update the model along the Polak-
Ribi�ere conjugate-gradient direction preconditioned by the stack of
all shots source wavefield energy.
2.2. Gradient approximated by de-primary imaging condition

Substituting Eq. (4) into Eq. (3) can yield the gradient of the
objective function

v4H
vmðxÞ ¼

P
t

�
vdðxr; tÞ
vmðxÞ

�y
0B@ dðxr; tÞ � dobsðxr; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ððdðxr; tÞ � dobsðxr; tÞ Þ=d Þ2
q

1CA
¼
X
xs

X
xr

X
u

� iuðGsðxjxs;uÞsðxs;uÞ ÞyGrðxrjx;uÞyDdðxr;uÞ

(7)

where Ddðxr;uÞ is the frequency domain counterpart of
dðxr ;tÞ�dobsðxr;tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þððdðxr;tÞ�dobsðxr;tÞ Þ=d Þ2
p , representing one element of the residual

vector of Huber-norm Ddðxr; tÞ, Gsðxjxs;uÞsðxs;uÞ represents the
forward wavefield that is generated by propagating the seismic
source from the source point xs to the reflection point x,
Gr

yðxrjx;uÞDdðxr;uÞ represents the backward wavefield that is
generated by propagating the residual from the reflection point xr
to the receiving point x, and y denotes conjugate transpose. The
physical meaning of Eq. (7) is the zero-lag cross-correlation of the
first-time derivative of the forward wavefield and the backward
wavefield of the residual. This is coincident with the zero-lag cross-
ss function 1
2kd� dobsk22 (red). (a) The functional value and (b) their gradients.

http://www.curvelet.org/
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correction imaging condition widely used in reverse-time migra-
tion (RTM). For a common shot gather, it can be expressed as

IðxÞ ¼
X
xs

XTmax

t¼0

Sðx; t; xsÞRðx; t; xsÞ (8)

where IðxÞ represents the RTM image, Sðx; t; xsÞ indicates the
source wavefield (or the forward wavefield), and Rðx; t; xsÞ stands
for the receiver wavefield (or the backward wavefield). Eq. (8) can
be expressed by wavefield decomposition as follows (Liu et al.,
2011)

IðxÞ ¼
X
xs

XTmax

t¼0

ðSdRd þ SuRu þ SdRu þ SuRdÞ

¼
X
xs

 XTmax

t¼0

SdRd þ
XTmax

t¼0

SuRu þ
XTmax

t¼0

SdRu þ
XTmax

t¼0

SuRd

! (9)

where the subscripts u and d indicate the up-going and down-
going wavefields. SdRd produces the primary reflectors, SuRu usu-
ally generates false reflectors in RTM, SdRu and SuRd produce low-
wavenumber migration artifacts. The process of producing the
false reflectors is shown in Fig. 2. Therefore, the de-primary im-
aging condition only retains the first term of Eq. (9). This term can
be expressed by using Hilbert Transform (Fei et al., 2015)

where Gðxjxr; tÞ represents the Green's function from the record
IðxÞ ¼
X
xs

XTmax

t¼0

SdRd ¼
X
xs

XTmax

t¼0

8>>>><>>>>:
SR� H zðSÞH zðRÞ � SH z

"X
xr

Gðxjxr; tÞ*H tðdobsðxr; tÞ Þ
#

�H zðSÞH z

"X
xr

Gðxjxr; tÞ*H tðdobsðxr; tÞ Þ
#

9>>>>=>>>>; (10)
point to the reflection point, H z and H t represent Hilbert Trans-
form along with the space and time direction, respectively, and *
denotes convolution.

In the same way, in order to suppress the low-wavenumber
artifacts and high-wavenumber false reflectors from the gradient
of Huber inversion-based RTM, we apply de-primary imaging
condition by decomposing the first-order time derivative of the
forward wavefield and the backward wavefield into the up-going
and down-going wavefields through the Hilbert Transform, and
then only keeping the first term. Therefore, the gradient of Huber
inversion-based RTM with the de-primary imaging condition can
be written approximately as

It can be seen from Eq. (7) that the gradient with the de-primary
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imaging condition in Eq. (11) is not the exact gradient of the
objective function, therefore, PLCG methods are not the best choice
for inversion. Its convergence will be affected. This situation hap-
pens not only in the Huber inversion-based RTM but also in the
traditional LSRTM with the de-primary imaging condition. To solve
this problem, the PNCG method is a better choice to ensure the
convergence of the inversion.

By combining all the aspects presented above, we minimize the
function in Eq. (2) by using IST with the Polak-Ribi�ere conjugate-
gradient direction preconditioned by the stack of all shots source
wavefield energy. The detailed algorithm is listed in Algorithm 1.
Generally, the optimal value of l is refined by trial and error. The
preconditioner M is defined as

MðxÞ ¼
X
xs

XTmax

t¼0

Sðx; t; xsÞ,Sðx; t; xsÞ (12)

Algorithm 1. The preconditioned non-linear conjugate-gradient
method with IST for Huber inversion-based RTM

Input: initial m, l, nmax;

n ¼ 0, g ¼ � vfHðiÞ
vm

Compute the preconditioner: M
r ¼ M�1g, s ¼ r, dnew ¼ gTs
While i<nmax do

a ¼ arg min
a

fHðnÞ ðm þ admÞ, where a is the step length
computed by line search and dm is a small perturbation along s.cm ¼ Cðm þ admÞ
m ¼ C�1ðTlðcmÞÞ, where Tlð bmiÞ ¼ sgnð bmiÞmaxð0; j bmij � lÞ
g ¼ � vfHðiÞ

vm
dold ¼ dnew, dmid ¼ gTr, r ¼ M�1g, dnew ¼ gTr
b ¼ maxððdnew � dmidÞ =dold;0Þ, s ¼ rþ bs
i ¼ iþ 1

end



Fig. 3. The Marmousi2 model: (a) the stratigraphic velocity model; (b) a smoothed version
parameter r1 ¼ r2 ¼ 10. The spatial sampling interval in the horizontal and vertical directi

Fig. 4. Two shot gathers: the source is located at the distance of (a

Fig. 2. Schematic illustration of the de-primary imaging condition in a three-layer
model. The blue dot represents the false image produced by the up-going wave-
fields, while the red dot denotes the true image created by the down-going wavefields.
Both of them have the same travel time.
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3. Numerical examples

3.1. Marmousi2 model

In the first example, theMarmousi2model is used to demonstrate
the effectiveness of theHuber inversion-based RTM. The seismic data
set is generated from the Marmousi2 model with fine stratigraphy
(Fig. 3a) by solving the two-way acoustic wave equation. The data set
includes 176 shots with a shot spacing of 50 m. A split-spread ge-
ometry is applied. The receiver spacing is 25 m. The minimum and
maximum offsets are 0 m and 2600 m, respectively. The source
wavelet is a 30HzRickerwavelet. The total recording duration is 3.2 s
with a sampling interval of 0.4 ms. The sources and receivers are
positioned at 20 m below the surface. Two typical shot gathers are
shown in Fig. 4, in which the direct arrivals are removed. A slightly
smoothed velocity model shown in Fig. 3b is used for migration. In
industrialapplications, themigrationvelocity isbuiltmainlywithray-
based reflection tomography (Murphy and Gray, 1999) or reflection
waveform inversion (Yao et al., 2020). Note that we deliberately
smoothed the velocity model slightly to demonstrate the inversion
methods’ effectiveness of suppressing low-wavenumber artifacts.
of (a). The smooth is achieved using the Seismic Unix command “smooth2” with the
ons is 6.25 m and 4 m, respectively.

) 2.675 km and (b) 5.675 km. The direct arrivals are removed.



Fig. 5. RTM images: (a) the zero-lag cross-correlation imaging condition and (b) the de-primary imaging condition.

Fig. 6. Migration images. (a) LSRTM with the zero-lag cross-correlation imaging condition; (b) LSRTM with the de-primary imaging condition; (c) Huber inversion-based RTM with
the de-primary imaging condition; (d) Huber inversion-based RTM with the de-primary imaging condition and the curvelet-domain spare constraint. The initial model is shown in
Fig. 5b. All the inversions contain 20 iterations. The red arrows indicate the low-wavenumber artifacts, whereas the blue arrows point out the high-wavenumber noise.
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Fig. 5a and b shows the RTM images with the zero-lag cross-
correlation imaging condition and the de-primary imaging condi-
tion, respectively. By comparison, low-wavenumber migration ar-
tifacts prevail because of the zero-lag cross-correlation imaging
condition in Fig. 5a. These artifacts cover up some real reflectors. In
Fig. 5b, the de-primary imaging condition mitigates the low-
wavenumber migration artifacts effectively. To further improve
the imaging quality, we carried out LSRTM using the result of RTM
with the de-primary imaging condition (Fig. 5b) as the initial
model. Figs. 6a and b depict the results of LSRTM with the zero-lag
cross-correlation imaging condition and the de-primary imaging
condition, respectively, after 20 iterations. As can be seen, although
the initial model does not contain low-wavenumber migration ar-
tifacts, the result of LSRTM with the zero-lag cross-correlation
imaging condition (Fig. 6a) introduces low-wavenumber artifacts
back, which are indicated by the red arrows in Fig. 6. By contrast,
LSRTM with the de-primary imaging condition removes the low-
wavenumber migration artifacts completely. Furthermore, the re-
flectors are focused better by using the de-primary imaging con-
dition than the zero-lag cross-correlation imaging condition. The
reason is that removing the low-wavenumber artifacts helps
inversion to focus on updating reflectors. Fig. 6c shows the imaging
result of Huber inversion-based RTM with the de-primary imaging
1547
condition. As the sedimentary strata dominates the Marmousi2
model, the events in the record share similar amplitudes. Thus, the
imaging result of Huber inversion-based RTM is similar to LSRTM.
However, we can still see high-wavenumber artifacts, pointed by
the blue arrows in Fig. 6c. The high-wavenumber artifacts are
suppressed largely by incorporating the curvelet-domain sparse
constraint, which is shown in Fig. 6d.

3.2. Sigsbee2A model

In the second example, the proposed method is applied to a
synthetic data set from the Sigsbee2A model, which is a very
challenging model for migration due to a huge salt body in the
model. A seismic data set is generated by solving the two-way
acoustic wave equation with the fine stratigraphic velocity model
(Fig. 7a). The data set includes 160 shots, which are excited with a
shot spacing of 137.16 m. A one-side geometry is used with a
receiver spacing of 45.72 m. The minimum and maximum offsets
are 0 m and 3989 m, respectively. The source wavelet is a 12 Hz
Ricker wavelet. The total recording duration is 12 s with a sampling
interval of 1 ms. Two typical shot gathers are shown in Fig. 8. A
smoothed version of the true velocity model shown in Fig. 7b is
used for migration.



Fig. 8. Two shot gathers. The source is located at a distance of (a) 0.274 km and (b) 13.99 km. The direct arrivals are removed.

Fig. 9. RTM images. (a) Using the zero-lag cross-correlation imaging condition; (b) Laplacian filtered result of the image in (a); (c) using the de-primary imaging condition.

Fig. 7. The Sigsbee2A models. (a) The stratigraphic velocity model, (b) a smoothed version of (a) using a 20-point cosine-square window for migration. The spatial sampling interval
along the horizontal and vertical directions is 11.43 m and 7.62 m, respectively.
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Fig. 10. Migration images: (a) LSRTM with the zero-lag cross-correlation imaging condition at the 20th iteration; (b) LSRTM with the de-primary imaging condition at the 15th
iteration; (c) Huber inversion-based RTM with the de-primary imaging condition at the 15th iteration; (d) Huber inversion-based RTM with the de-primary imaging condition and
the curvelet-domain sparse constraint at the 15th iteration.

B. Wu, G. Yao, J.-J. Cao et al. Petroleum Science 19 (2022) 1542e1554
Fig. 9a shows the RTM images with the zero-lag cross-correla-
tion imaging condition. As can be seen, strong low-wavenumber
migration artifacts in Fig. 9a affect the imaging result severely: it
covers up the real high-wavenumber reflectors. Fig. 9b depicts the
Laplacian filtered result of the image in Fig. 9a. After removing low-
wavenumber artifacts through Laplacian filtering, there are still
noticeable false high-wavenumber reflectors as well as artifacts. By
contrast, the de-primary imaging condition gives a clean image
(Fig. 9c) by effectively suppressing both low- and high-
wavenumber migration artifacts. But subsalt reflectors are still
unclear due to poor illumination.

We then carried out inversion-based migration starting from
the result shown in Fig. 9c. Figs. 10a and b depict the results of
LSRTM with the zero-lag cross-correlation imaging condition and
the de-primary imaging condition, respectively. As can be seen,
LSRTM with the zero-lag cross-correlation imaging condition im-
proves sub-salt imaging. However, it introduces both low- and
high-wavenumber artifacts back. Note that the result will be worse
if the inversion starts from the result of the zero-lag cross-corre-
lation imaging condition shown in Fig. 9a. By contrast, LSRTM with
the de-primary imaging condition produces much fewer artifacts.
However, the area indicated by the red box, the enlarged view of
which is shown in Fig.11, is still not imagedwell. Themain reason is
that strong events generated from the salt interfaces dominate the
L2-norm-based LSRTM inversion. Therefore, we carry out Huber
inversion-based RTM with the de-primary imaging condition. The
continuity of the strata (indicated by the red box in Fig. 10c) is
improved. Besides, the broken section of the bottom reflector at a
distance of 16 km is also fixed. This demonstrates that Huber
inversion-based RTM with the de-primary condition has the
capability to image complex models even with insufficient illumi-
nation. However, the inversion process also generates high-
wavenumber migration noise while promoting the resolution of
migration images. To suppress the noise, we added a curvelet-
domain sparse constraint to the inversion. Fig. 10d shows the
result, in which the high-wavenumber migration noise is sup-
pressed largely. Note that there are still some migration artifacts
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below the salt body. These artifacts are mainly generated by
interbed multiples in the record. One way to remove them is to
carry out de-multiples before migration (Griffiths et al., 2011; Dutta
et al., 2019).

4. Discussion

4.1. Comparison of convergence speed

Conventional LSRTM is a quadratic problem, where the data
linearly depend on themodel. Its migration operator is the adjoint of
its modeling operator. Consequently, a linear conjugate-gradient
method is an effective and efficient way to solve this problem. This
is demonstrated by the red curves in Fig. 12. However, when the de-
primary imaging condition is applied to form an approximate
gradient for reducing migration artifacts, the approximate gradient
direction is no longer the exact gradient direction. As a result, the
PLCG method will lose conjugacy as inversion progresses. This is
illustrated by the black curve in Fig.12. Tomitigate this problem, Kim
et al. (2019) carried out LSRTM with the de-primary imaging con-
dition in the early iterations and then switched the imaging condi-
tion to the zero-lag cross-correlation imaging condition to improve
the convergence, which is shown by the green curve. However, the
drawback of Kim's strategy is that the switch will introduce both
low- and high-wavenumber artifacts back. Since the reason for slow
convergence is due to the approximation to the gradient, we chose
the PNCG method described in Algorithm 1 to guarantee the
convergence of LSRTM and Huber inversion-based RTMwith the de-
primary condition. As illustrated by the yellow and blue curves in
Fig. 12, the inversions with the de-primary imaging condition
converge. The convergence is also demonstrated in Fig. 13, which
shows the Marmousi result of LSRTM with the de-primary imaging
condition using PLCG and PNCG. As can be seen, PNCG suppresses
artifacts (indicated by the red arrow) more effectively than PLCG. In
the test, the Huber inversion-based RTM is even with the L1-norm
constraint, which leads the objective function to be non-smooth. As
also can be seen, the Huber inversion-based RTM converges faster



Fig. 12. Convergence curves of migration on Marmousi2 model: the red curve is for
LSRTM with the zero-lag cross-correlation imaging condition and preconditioned
linear conjugate gradient (PLCG); the black curve is for LSRTM with the de-primary
imaging condition and PLCG; the yellow curve is for LSRTM with the de-primary im-
aging condition and preconditioned nonlinear conjugate gradient (PNCG); the green
curve is for Kim's LSRTM using the zero-lag cross-correlation imaging condition and
PLCG; the blue curve is for our proposed method.

Fig. 11. Enlarged view of the migration results shown in Fig. 10. (a)-(d) are corresponding to the red box areas in (a)-(d) of Fig. 10, respectively.

Fig. 13. The migration images of LSRTM with the de-primary imaging conditio
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than LSRTM in the early iteration. Note that the key benefit of the
Huber norm is to promote the weak events during the inversion. We
also should note that LSRTM with the zero-lag cross-correlation
imaging condition gives the best convergence but this is a result of
creating migration artifacts to overfit the record.

Utilizing the de-primary imaging condition in LSRTM can achieve
better convergence with fewer iterations. To implement the de-
primary imaging condition, it is necessary to perform the Hilbert
Transform on wavefields along the time and space directions. In this
paper, we implement the Hilbert Transform along the time direction
by convolving the residual with the Hilbert function in the time
domain while we achieve the Hilbert Transform along the space di-
rection by multiplication after transforming into the frequency
domain with FFT. Our tests show the de-primary imaging condition
increases about 20% extra cost. Table 1 lists the time cost of LSRTM
with and without the de-primary imaging condition. In the Mar-
mousi2example,weusedninenodes,eachwith twoE5-2630v4CPUs.
4.2. Noise suppression with the curvelet-domain sparse constraint

The data sets of previous examples are generated by solving the
full acoustic wave equation with an absorbing boundary condition.
Consequently, all the data sets contain interbed multiples, which
n: (a) using PLCG and (b) using PNCG. The inversion takes 20 iterations.



Table 1
The time cost of LSRTM with and without the de-primary imaging condition.

Time cost of
1iteration

Time cost of 20
iterations

LSRTM without de-primary imaging
condition

1416 s 28735 s

LSRTM with de-primary imaging
condition

1697 s 33912 s
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are a type of coherent noise. The results demonstrate that the
curvelet-domain sparse constraint can partially suppress the
coherent noise. The fundamental mechanism is that the coherent
noise does not focus very well, and its image is prone to complex
artifacts, which turns into dense features in the curvelet-domain
and therefore can be suppressed by the curvelet-domain sparse
constraint. The partial suppression on coherent noise can be seen
from Figs. 10 and 11. In terms of suppressing random noise, the
curvelet-domain sparse constraint is more effective than coherent
noise. We add heavy random noise (S/N¼ 5) in the observed data of
theMarmousi2 model (Fig.14b). Figs. 15a and b depict the results of
LSRTM. As can be seen, the result of LSRTM without the constraint
Fig. 14. One shot profile (a) without and (b) with random noise. The source is located at
command “suaddnoise”. The direct arrivals are removed.

Fig. 15. Migration images with random noise: (a) LSRTM with the de-primary imaging cond
curvelet-domain sparse constraint at the 20th iteration.
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has a lot of high-wavenumber noise as the observed data contain
heavy random noise. By contrast, LSRTM with the curvelet-domain
sparse constraint suppresses the heavy random noise significantly.
4.3. Accuracy of migration velocity

In the example of the Sigsbee2A model, we found that the ac-
curacy of the migration velocity model is very important for
inversion-based RTM to image the salt body properly. Fig. 16 shows
the migration velocity provided from the original distribution
(Paffenholz et al., 2002), which is extremely smooth and contains
relatively large velocity errors, for instance, the valley area is
crossed by the wave-path in Fig. 16. The migration results are
shown in Figs. 17a and c. As can be seen, the lower boundary of the
salt body is broken as well as weak with the original migration
velocity (indicated by the blue arrows in Figs. 17a and c). By
contrast, a more accurate velocity shown in Fig. 7b, which is
generated by smoothing the true velocity model with a 20-point
cosine-square window, gives a continuous and focused image of
the lower boundary. The reason is that the inaccurate velocity in the
valley (crossed by the wave-path shown in Fig. 16) leads to a travel-
time error comparable to half a cycle; the inversion process then
a distance of 2.657 km. The S/N ratio is 5, which is achieved using the Seismic Unix

ition at the 20th iteration; (b) LSRTM with the de-primary imaging condition and the



Fig. 16. The migration velocity model provided by the original distributor. A wave-path
(fat ray) between a point on the surface and a point on the salt boundary is overlapped
on the migration velocity model.
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creates a shifted reverse polarity update resulting in the broken and
weak image of the lower boundary.

4.4. Alternative loss function

In addition to the Huber-norm loss function, there are other loss
functions for suppressing large residuals. One of them is based on
the Student's T-distribution (Aravkin et al., 2011), which can be
expressed as
Fig. 17. (a) RTM with the de-primary imaging condition and the migration velocity model sh
LSRTM with the de-primary imaging condition and the migration velocity model shown in F
Fig. 7b. (e) and (f) are the counterpart of (c) and (d) at the 10th iteration, respectively.
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where s represents the degrees of freedom and l is the dimension of
the vector d, i.e. l ¼ 1 for a 1D vector. Aravkin et al. (2011) suggested
that s can be set as a small number, e.g. 2 or 3. If s ¼ 1, then the loss
function based on the Student's T-distribution is equivalent to the
loss function based on the Cauchy distribution with the hyper-
parameter equal to 1. For comparison, we show the two loss
functions and their derivatives in Fig. 18. As can be seen, the loss
function based on the Student's T-distributions suppresses the
large residuals more than the Huber-norm loss function. One
drawback, however, is that it is no longer strongly convex, resulting
in slower convergence. On the contrary, the Huber-norm loss
function can also suppress large residuals and is strictly convex. In
addition, the Huber-norm loss function can adjust the value of d to
suppress large residuals adaptively. So that in the early iterations, a
large d can be used to relax the suppression of large residuals to
avoid slow convergence.

5. Conclusion

Standard LSRTM can yield better images than conventional RTM.
However, three problems still exist: (1) inversion can be dominated
by strong events in the residual; (2) low-wavenumber artifacts in
own in Fig. 16. (b) The same as (a) but with the migration velocity model in Fig. 7b. (c)
ig. 16 at the 1st iteration. (d) The same as (c) but with the migration velocity model in



Fig. 18. A sketch of the L2-norm loss function (red), the Student's T-distribution loss function (green, s ¼ 1, l ¼ 1) and the Pseudo-Huber loss function (blue, d ¼ 1). (a) The
functional value and (b) their gradients.

B. Wu, G. Yao, J.-J. Cao et al. Petroleum Science 19 (2022) 1542e1554
the gradient affect convergence speed and imaging results; (3)
high-wavenumber noise is also enhanced as iteration increases. To
solve these problems, we formed the inversion-based RTM by
combining the Huber-norm of data misfit and the L1-norm of
reflectivity in the curvelet-domain as the objective function. The
mixed norm functional is solved by using an improved IST method,
which is updated along the Polak-Ribi�ere conjugate-gradient di-
rection by using a preconditioned non-linear conjugate-gradient
method. The de-primary imaging condition is used to remove the
low-wavenumber artifacts as well as high-wavenumber false re-
flectors in the gradient. The numerical examples, especially the
Sigsbee2A model, demonstrate that the proposed method has
greatly improved the migration image, especially the sub-salt im-
age, compared with traditional RTM and LSRTM. In theory, all the
techniques presented in the paper can be extended into 3D.
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