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a b s t r a c t

The Gaussian beam migration (GBM) is a steady imaging approach, which has high accuracy and effi-
ciency. Its implementation mainly includes the traditional frequency domain and the recent popular
space-time domain. Firstly, we use the upward ray tracing strategy to get the backward wavefields. Then,
we use the dominant frequency of the seismic data to simplify the imaginary traveltime calculation of
the wavefields, which can cut down the Fourier transform number compared with the traditional GBM in
the space-time domain. In addition, we choose an optimized parameter for the take-off angle increment
of the up-going and down-going rays. These optimizations help us get an efficient space-time-domain
acoustic GBM approach. Typical four examples show that the proposed method can significantly
improve the computational efficiency up to one or even two orders of magnitude in different models
with different model parameters and produce good imaging results with comparable accuracy and
resolution with the traditional GBM in the space-time domain.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The Gaussian beam migration (GBM) method is a research
hotspot because it can produce good imaging results and have high
computational efficiency (�Cervený et al., 1982; Popov, 1982, 2002;
�Cervený and P�sen�cík, 1983, 1984). Its implementation mainly in-
cludes the traditional frequency domain and the recent popular
space-time domain. Hill (1990, 2001) proposed the GBM methods
for zero-offset and prestack Gaussian-beam depth migration,
respectively. Nowack et al. (2003) extended the method of Hill
(2001) to the gathers of common-receiver in order to meet the
requirements for some typical land and submarine cable. Gray
(2005) presented a common-shot implementation, which can
naturally handle the multipathing. Hu and Stoffa (2009) used the
horizontal surface slowness information to get a slowness-driven
GBM, which can naturally combine the Fresnel weighting with
beam summation. It can suppress the noise caused by the
.

y Elsevier B.V. on behalf of KeAi Co
inadequate stacking and produce bettermigration results. To satisfy
the requirement of target-oriented imaging, Zhang et al. (2019)
implemented the process of back-wavefelds propagation by
shooting the rays from subsurface imaging points to receivers.

Yue et al. (2010, 2012) extended the GBM to the complex
topography. Gray and Bleistein (2009) proposed a true-amplitude
GBM method, which can get an expression under cross-
correlation imaging condition and obtain some Amplitude Varia-
tion with Offset (AVO) information. Alkhalifah (1995) and Zhu et al.
(2007) had extended the GBM to Vertical Transversely Isotropic
(VTI) medium. Han et al. (2014) proposed a prestack depth GBM
method using the converted wave in TI media. Protasov (2015)
extended the method of Alkhalifah (1995) to multiple-component
seismic data in anisotropic media. Li et al. (2018) proposed an
anisotropic converted wave GBM method in angle-domain. At the
same time, it had been implemented in elastic media. Protasov and
Tcheverda (2012) proposed a true amplitude elastic GBM using the
multicomponent vertical seismic data. Huang et al. (2017) devel-
oped the reverse time migration with elastic Gaussian beams. Yang
et al. (2018a) extended the elastic GBM to common-shot multiple-
component seismic records. In order to solve an optimization
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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problem, Bai et al. (2016) proposed a multicomponent Gaussian
beam to correct the absorption and dispersion associated with the
frequency. In addition, Hu et al. (2016) and Yang et al. (2018b)
proposed the least-squares GBM methods, which can improve the
fidelity of the amplitude in comparison with the traditional GBM
and produce comparable imaging accuracy with the least-squares
RTM (Yao et al., 2018; Wu et al., 2021).

Meanwhile, GBM is implemented in the time domain. �Z�a�cek
(2006) obtained the time-wavefields with a series of Gaussian
beam packets (Klime�s, 1989) and implemented a packet GBM
method. Yang et al. (2015) used the Gaussian beams reverse
propagation (Popov et al., 2007, 2010) to get a space-time-domain
GBM approach, which have higher imaging accuracy than the
traditional frequency-domain GBM. Lv et al. (2019) developed an
optimized space-time-domain Gaussian beam scheme for seismic
depth imaging based on the new beam shape, named as space-
time-domain adaptive Gaussian beam.

However, when we construct the reverse wavefields using the
GBM in the frequency-domain, it could produce some weak im-
aging in some deep complex structures. For the GBM in the tradi-
tional space-time domain, it has better accuracy at the expense of
the computational efficiency. In this paper, we come up with a new
strategy to balance the time cost and imaging precision in space-
time-domain GBM. First of all, we review the upward ray tracing
strategy while constructing the backward wavefields. Then, we use
the dominant frequency of the seismic data to simplify the imagi-
nary traveltime calculation of the wavefields. In addition, we
choose an optimized parameter of the take-off angle increment for
the up-going and down-going rays, and obtain a fast and accurate
GBM approach in the space-time domain.
2. Theory

2.1. Gaussian beam in the space-time domain

According to �Cervený et al. (1982), in the 2D ray centered co-
ordinate system ðs;nÞ (Fig. 1), s is the length of arc along the ray at
the reference point, n represents the length in the vertical direction
with s. The time of ray propagationg can be written as

t¼ tðsÞ ¼
ðs
0

1
v0ðsÞ

ds (1)

where t is time, tðsÞ denotes the traveltime, and v0ðsÞ denotes the
Fig. 1. The 2D ray centered coordi
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initial velocity of seismic wave propagation.
In 2D acoustic media, we consider the space-time-domain ray

method for the constant-density acoustic wave equation with the
piont source function f ðtÞ as

DUðr; tÞ� 1
v2

v2Uðr; tÞ
vt2

¼ f ðtÞdðr� r0Þ (2)

where Uðr; tÞ are the seismic wavefields generated by the point
source function f ðtÞ, r is the parameterized form of the ray, v is the
velocity of seismic wave propagation, dðr� r0Þ is the delta function,
f ðtÞ can be written as

f ðtÞ¼AðtÞexp½ixqðtÞ� (3)

where AðtÞ and qðtÞ are the fully smooth functions, and q0ðtÞ ¼
dq
dts0. The momentary frequency uðtÞ ¼ �xq0ðtÞ will be a large
parameter when x becomes infinite.

To solve Eq. (2), according to Bender and Orszag (2013), the
WKBJ solution of Eq. (2) can be written as

Uðr; tÞ¼ exp½ixqðr; tÞ�
X∞
n¼0

Unðr; tÞ
ðixÞn (4)

where eikonal qðr; tÞ and amplitudes Unðr; tÞ satisfy the eikonal and
transport equations, respectively.

According to Katchalov and Popov (1988), the 2D Gaussian beam
in the space-time domain can be written as

Uðx0; t;xsÞ¼ � i
4p

ð
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðs0ÞvðsÞ
vðs0ÞQðsÞ

s

�exp
�
iu
�
� ðt� tÞþ1

2
PðsÞ
QðsÞn

2
�� (5)

where x0 ¼ ðx0; z0Þ denotes the spatial rectangular coordinate at
the imaging points, xs ¼ ðxs;0Þ denotes the spatial position coor-
dinate at the shot points, u is the angular frequency, ε is the initial
beam parameter. The scalar fuctions PðsÞ and QðsÞ are complex, and
they can be written as

�
PðsÞ ¼ εpð1ÞðsÞ þ pð2ÞðsÞ
QðsÞ ¼ εqð1ÞðsÞ þ qð2ÞðsÞ (6)

where ðpð1ÞðsÞ; qð1ÞðsÞÞ and ðpð2ÞðsÞ; qð2ÞðsÞÞ are two solutions of the
dynamic ray tracing equations with spherical and plane-wave
nates in the vicinity of a ray.
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initial conditions. Hill (1990) gave the expression of ε and the initial
value of qðs0Þ and pðs0Þ as8>>><
>>>:

ε ¼ �iuref l
2
0"

qð1Þðs0Þ qð2Þðs0Þ
pð1Þðs0Þ pð2Þðs0Þ

#
¼
�
1 0
0 1

� (7)

where l0 ¼ 2pvðsÞ
uref

is the initial beam width, uref is the reference
frequency occurring in the seismic data.

According to Cerveny et al. (1982), in the 2D ray centered co-
ordinates system ðs;nÞ, the ray propagationg matrix from ðs0;0Þ to
ðs;0Þ can be expressed as

Y
ðs; s0Þ¼

�
qð1ÞðsÞ qð2ÞðsÞ
pð1ÞðsÞ pð2ÞðsÞ

�
(8)

If the Gaussian beam propagates from ðs;0Þ to ðs0;0Þ, the initial
position can be written as�
Qðs0Þ
Pðs0Þ

�
¼
Y

ðs; s0Þ�1
�
ε

1

�
(9)

We establish the relationship between ðs;0Þ and ðs0;0Þ by Eq. (8)
and Eq. (9). If we know one, we can get another.

2.2. Construction of wavefields

The forward wavefields WðFÞðx0; t; xsÞ could be composed of a
series of Gaussian beams from different angles and frequencies
(�Cervený et al., 1982; Popov, 1982), which could be expressed as

WðFÞ
 
x0; t; xs

!
¼ � i

4p

ð
du
ð2p
0

d4exp
�
� 1
2
uIm

�
PðsÞ
QðsÞn

2
��

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðs0ÞvðsÞ
vðs0ÞQðsÞ

s
exp

�
iu
�
� ðt� tÞþ1

2
Re
�
PðsÞ
QðsÞn

2
���

(10)

We use the dominant frequency of the seismic data to simplify
the imaginary traveltime calculation of the forward wavefields as

8>>><
>>>:

TðFÞiðx0;4Þz
1
2
Im
�
PðsÞ
QðsÞn

2
�

TðFÞrðx0;4Þ ¼ tþ 1
2
Re
�
PðsÞ
QðsÞn

2
� (11)

where TðFÞrðx0;4Þ are the traveltime real parts of the forward
wavefields and TðFÞ

iðx0;4Þ are the traveltime imaginary parts of the
forward wavefields.

Combining Eqs. (10) and (11), the approximation of
WðFÞðx0; t; xsÞ can be written as

WðFÞðx0; t; xsÞ ¼ � i
4p

ð2p
0

d4AFðx0;4; xsÞ
ð
du

� exp
h
� iu

	
t � TðFÞrðx0;4Þ


i (12)
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where

AFðx0;4;xsÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðs0ÞvðsÞ
vðs0ÞQðsÞ

s
exp

h
� umTðFÞiðx0;4Þ

i
(13)

where um is the dominant frequency of the seismic data.
Applying the inverse Fourier transform to Eq. (12) to get

WðFÞðx0; t; xsÞ¼ � i
4p

ð2p
0

d4AFðx0;4;xsÞd
h
t� TðFÞrðx0;4Þ

i
(14)

Then we use an upward ray tracing strategy to construct the
backward wavefields as shown in Fig. 2. The reverse seismic wave
propagation using the Kirchhoff integration (Popov et al., 2010)
from the receiver points to imaging points can be expressed as

WðRÞðx0; t0Þ¼ � 2
ðT
0

dt
ð
dxrPUðxr; tÞ

v

vz
Gðxr; t� t0;x0Þ (15)

where PUðxr; tÞ are the recorded wavefields and Gðxr; t; x0Þ is the
Green's function. Yang et al. (2015) got the approximation of the
Green's function using the Gaussian beams stack, which can be
expressed as

Gðxr; t � t0; x0Þy� i
4p

ð
du
ð2p
0

d4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðs0ÞvðsÞ
vðs0ÞQðsÞ

s

� exp
�
iu
�
� ðt � t0Þ þ

1
2

PðsÞ
QðsÞn

2
�� (16)

Based on the high-frequency asymptotic condition, we can
simplify the derivative of the Green's function as

vGðxr; t � t0; x0Þ
vz

ziupzGðxr; t� t0;x0Þ (17)

where pz are the vertical ray parameter at receiver points.
Inserting Eq. (16) and Eq. (17) into Eq. (15), the expression of

WðRÞðx0; t0Þ can be written as
Fig. 2. Diagram of the upward ray tracing strategy.
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WðRÞðx0; t0Þ ¼ �upz
2p

ðT
0

dt
ð
dxr
ð
du
ð2p
0

d4PUðxr ; tÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðs0ÞvðsÞ
vðs0ÞQðsÞ

s
exp

�
iu
�
� ðt � t0Þ þ

1
2

PðsÞ
QðsÞn

2
�� (18)

We apply the Fourier transform of the time-domain part of
WðRÞðx0; t0Þ to produce the frequency-domain part ofWðRÞðx0; t0Þ as

ðT
0

dtPU

 
xr; t

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðs0ÞvðsÞ
vðs0ÞQðsÞ

s
exp

�
iu
�
�
�
t � t0

�
þ 1
2

PðsÞ
QðsÞn

2
��

/
F
PU

�
xr ;u

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðs0ÞvðsÞ
vðs0ÞQðsÞ

s �*

exp
�
iu
�
t0 þ

1
2

PðsÞ
QðsÞn

2
��

(19)

Then WðRÞðx0; t0Þ can be rewritten as

WðRÞ
 
x0; t0

!
¼ � 1

2p

ð
dxr
ð
udu

ð2p
0

d4pzPU

 
xr;u

!

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εðs0ÞvðsÞ
vðs0ÞQðsÞ

s �*

exp
�
iu
�
t0 þ

1
2

PðsÞ
QðsÞn

2
�� (20)

Similarly, we use um to simplify the imaginary parts of the
backward wavefields as

8>>><
>>>:

TðRÞiðx0;4Þz
1
2
Im
�
PðsÞ
QðsÞn

2
�

TðRÞrðx0;4Þ ¼
1
2
Re
�
PðsÞ
QðsÞn

2
� (21)

where TðRÞ
rðx0;4Þ are the traveltime real parts of the backward

wavefields and TðRÞiðx0;4Þ are the traveltime imaginary parts of the
backward wavefields.

Combining Eqs. (20) and (21), WðRÞðx0; t0Þ can be reduced to

WðRÞðx0; t0Þ ¼ � 1
2p

ð
dxr
ð
udu

ð2p
0

d4pzPUðxr;uÞ

� AR
*ðx0;4; xrÞexp

h
iu
	
t0 þ TrðRÞðx0;4Þ


i (22)

where
Fig. 3. The flo
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AR
*ðx0;4; xrÞ¼

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðs0ÞvðsÞ
vðs0ÞQðsÞ

s !*

exp
h
umTðRÞiðx0;4Þ

i
(23)

Applying the inverse Fourier transform of Eq. (22) to get

WðRÞðx0; t0Þ¼ � 1
2p

ð
dxr

ð2p
0

d4pz

�AR
*ðx0;4; xrÞg

h
xr; TrðRÞðx0;4Þ

i (24)

where

gðxr; tÞ¼
ð
uPUðxr ;uÞexpðiutÞdu (25)

2.3. Space-time-domain GBM

Thus, we use the cross-correlation imaging condition to get the
imaging results as

Iðx0;xsÞ¼
ðT
0

dtWðFÞðx0; t; xsÞWðRÞðx0; tÞ (26)

To reduce the coherent noise, we get the final imaging results by
stacking the multiple-shot imaging profiles. Iðx0Þ can be expressed
as

Iðx0Þ¼
ð
dxs
ðT
0

dtWðFÞðx0; t; xsÞWðRÞðx0; tÞ (27)

Inserting Eq. (14) and Eq. (24) into Eq. (27), the imaging formula
of our method can be finally written as

Iðx0Þ¼
i

8p2

ð
dxs
ð
dxr
ðT
0

dt
ð2p
0

d4pzAFðx0;4; xsÞ

�AR
*ðx0;4; xrÞg

h
xr ; TrðRÞðx0;4Þ

i
d
h
t� TðFÞrðx0;4Þ

i (28)

2.4. Ray parameter optimization

For the take-off angle increment of the up-going and down-
going rays, we use the angle spacing of the central rays in the
wchart.



Fig. 4. The simple layers model.

Fig. 5. Multiple-shot migration results for the simple layers model.

Fig. 6. The graben model.

Fig. 7. Multiple-shot migration results for the graben model.
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Fig. 8. The buried hill model.

D.-L. Zhang, J.-P. Huang, J.-D. Yang et al. Petroleum Science 19 (2022) 1555e1565
frequency-domain GBM (Hill, 1990) as

D¼ p
4l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
urefuhig

p (29)

where uhig is the highest frequency in the seismic data.
The number of up-going and down-going rays that we need to

calculate in every loop can be expressed as

na ¼ sinðamaxÞ=vmin � sinðaminÞ=vmin
4D

(30)

where amax is the maximum offset angle, amin is the minimum
offset angle, vmin is the minimum velocity.

With the premise of ensuring imaging accuracy, the calculation
time of the amplitude and traveltime of the up-going and down-
going rays in the loop algorithm is reduced, further improve the
computational efficiency of our method.

Finally, we give the implementation process of the proposed
method (Fig. 3b). Compared with Yang et al. (2015)'s method
(Fig. 3a), we see that our method realizes one cycle in the algorithm
than Yang et al. (2015)'s method and we choose an optimized
parameter of the take-off angle increment for the up-going and
down-going rays, which can help us obtain a faster space-time-
domain GBM approach.
Fig. 9. Multiple-shot migration results for the buried hill model.
3. Numerical examples

In this section, we present four numerical examples. The refer-
ence frequency is 10 Hz. And the maximum and minimum angles
are 1

3p and �1
3p, respectively.

In the first example, we use the simple layers model as shown in
Fig. 4 to test the correctness of our method. The grid size of this
model is 1001 � 501 with the spacing size of 10 m. There are 26
shots, and the shot spacing is 200 m. There are 501 traces per shot,
and the trace spacing is 10 m. The recording time length is 5 s, and
the sampling interval is 0.5 ms. Fig. 5 are the results which we use
the frequency-domain GBM, Yang et al. (2015)'s method and our
method. In Fig. 5b and c, we see that our new method produces
good imaging results with comparable accuracy to the Yang et al.
(2015)'s method, indicating that our method is correct for the
simple model. Besides, compared with the running time of two
space-time-domain GBM methods, our new method can increase
the computational efficiency by 211.4 times for the simple layers
model (Fig. 4).

Then, we use the graben model (Fig. 6) to test the adaptability of
our method for the simple models. It has the grid size with
1801 � 301. The horizontal spacing is 5 m and the vertical grid
spacing is 10 m. The shots number is 201 and each shot has 301
traces. The shot and trace spacing are 25 m and 10 m, respectively.
The time sampling interval is 1 ms and the number of time sample
is 2500. Fig. 7a and b are the migration results of the frequency-
1560
domain GBM and the space-time-domain GBM method proposed
by Yang et al. (2015). The frequency-domain GBM produces some
imaging artifacts (red arrows) in Fig. 7a. In Fig. 7b and c, we see that
they can clearly image all reflectors with good accuracy due to the
upward ray tracing strategy for time reversal wavefields. At the
same time, the comparisons of the running time of two space-time-
domain GBMmethods show that our newmethod can improve the



Fig. 10. The Marmousi model.
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computational efficiency by 136.0 times for the graben model
(Fig. 6).

In the third example, we use the buried hill model (Fig. 8) to test
the adaptability of our method for imaging some complex struc-
tures. The grid size of this model is 1301� 401 and the grid spacing
is 10 m. There are 30 shots, and the shot spacing is 300 m. There are
Fig. 11. Multiple-shot migration results for the Marmousi model.

1561
401 traces per shot, and the trace spacing is 10 m. The time sam-
pling interval is 0.5 ms and the number of time sample is 6001.
Fig. 9 shows the results of the frequency-domain GBM, Yang et al.
(2015)'s method and our method. We can see that frequency-
domain GBM produces some shallow wide-angle reflections (red
arrows) in Fig. 9a. Compared with Fig. 9a and b, the space-time-
domain GBM method produces good imaging quality for the
shallow layers. And our method produces the comparable results to
Fig. 12. Magnification of migration images from Fig. 11 (blue rectangle).



Table 1
The parameters of two space-time GBM methods.

Models Layers Graben Buried hill Marmousi

Y 0.02000 0.00592 0.01653 0.00128

D.-L. Zhang, J.-P. Huang, J.-D. Yang et al. Petroleum Science 19 (2022) 1555e1565
the Yang et al. (2015)'s method (Fig. 9b and c). Compared with the
running time of two space-time-domain GBM methods, our
method can improve the computational efficiency by 174.7 times
for the buried hill model (Fig. 8).

The final example is the 2DMarmousi model in Fig. 10. It has the
grid size with 737 � 750. The horizontal grid spacing is 12.5 m and
the vertical grid spacing is 4.0 m. Here, the CDP spacing is 25 m.
There are 240 shots and each shot has 96 traces. The time sampling
interval (4 ms) is much larger than the first three models and the
total time record is 2.5 s. Fig. 11 are the results which we use the
frequency-domain GBM, Yang et al. (2015)'s method and our
method. We see that two space-time-domain GBM methods pro-
duce better imaging quality for the shallow layers than the
frequency-domain GBM in Fig. 11 (blue and red rectangles). Fig. 12
and Fig. 13 are the magnification of migration images from the blue
and red rectangles in Fig. 11, respectively. We see that two space-
time-domain GBM methods approximately have the same imag-
ing accuracy as shown Fig. 11. However, our method slightly de-
creases the imaging energy at the top of the deep anticline because
our approximations may result in less Gaussian beam stacking at
Fig. 13. Magnification of migration images from Fig. 11 (red rectangle).
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some complex areas. Compared with the running time of two
space-time-domain GBM methods, our method can improve the
computational efficiency by 39.9 times for the Marmousi model
(Fig. 10).
4. Discussion

4.1. The sensitivity of the model parameters

Fitstly, we're going to focus on what parameters affect the final
computational efficiency of our method.

We define the following formula as
Traditional cost/shot 6722.5 min 1645.6 min 4385.0 min 103.7 min
Our cost/shot 31.8 min 12.1 min 25.1 min 2.6 min
T 211.4 136.0 174.7 39.9

Fig. 14. The function of T as g varies.

Fig. 15. The results of wavelet comparisons for Fig. 5 in Yang et al. (2015)'s method
(black) and our method (red).



Fig. 16. The results of wavelet comparisons for Fig. 12 in Yang et al. (2015)'s method
(black) and our method (red).

Fig. 17. The results of wavelet comparisons for Fig. 13 in Yang et al. (2015)'s method
(black) and our method (red).

Fig. 18. Comparisons of wavenumber spectrum for Fig. 5 (all p
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g¼ Nt

na2
(31)

where Nt denotes the wavelet length, which is negatively associ-
ated with the time sampling interval in the traditional space-time-
domain GBM.

And the running time of two space-time-domain GBM methods
of a single shot can be seen in Table 1. We define the ratio of the
running time of the traditional space-time-domain GBM to the
running time of our method as

T ¼ T1
T2

(32)

where T1 is the running time of the traditional space-time-domain
GBM for a single shot, T2 is the running time of our method for a
single shot.

In Fig. 14, the profile suggests that the improved computational
efficiency of our method T is positively correlated with g. It is just
the result that we do some approximations and optimizations.
4.2. The influence of the comlexity of the models

Secondly, we will discuss the cost difference caused by the
differentmodel complexity. In our newalgorithm, the running time
(Ttotal) can be mainly divided into two parts (Tray and Tmigration). The
first part (Tray) is the cost for the ray tracing, which is the same cost
between our new method and Yang et al. (2015)'s method. The
second part (Tmigration) is the cost of the migration process. In our
new method, we first decrease the loop layer from 5 of Yang et al.
(2015) to 4; in addition, we also highly improve the computa-
tional efficiency by decreasing the up-going and down-going rays
density in loop 3 and loop 4 in Fig. 3b. For different models with the
same paremeters, Tray is basically same with two space-time-
domain GBM methods, which mainly depends on the complexity
of the models. As the model gets more complex, Tray becomes
bigger. At the same time, our approximations and optimizations
mainly reduce Tmigration. Thus, it will slightly reduce the improved
computational efficiency of our method with more complex
models.
4.3. The quantitative analysis of our method

Finally, we give the quantitative analysis of our method using
anels are normalized according to their maximum values).



Fig. 19. Comparisons of wavenumber spectrum for Fig. 12 (all panels are normalized according to their maximum values).

Fig. 20. Comparisons of wavenumber spectrum for Fig. 13 (all panels are normalized according to their maximum values).
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the simple layers and Marmousi models as the examples. Fig. 15,
Fig. 16 and Fig. 17 are the results of wavelet comparisons for Fig. 5,
Fig. 12 and Fig. 13 in two space-time-domain GBM methods,
respectively. We can find that our method has slight influence on
the wavelet phase in some locations, which approximately in-
fluences 1%e3% for lithology imaging. But it is worth that we
significantly improve the computational efficiency up to one or
even two orders of magnitude. Fig. 18, Fig. 19 and Fig. 20 are the
comparisons of wavenumber spectrum for Fig. 5, Fig. 12 and Fig. 13
in two space-time-domain GBM methods, respectively. In general,
two methods have a nearly same range of wavenumbers because
our method only simplifies the computation of the forward and
backward wavefields associated with the imaginary traveltime, the
real traveltime still contains the information with all frequencies.
5. Conclusions

We propose a fast and accurate space-time-domain acoustic
GBM method with some approximations and optimizations. Four
numerical examples show that the proposed method can signifi-
cantly reduce the computational cost of the traditional space-time-
domain GBM. And different models can improve the computational
efficiency differently, it mainly depends on the selections of the
parameters of different models. Compared with the frequency-
domain GBM, our method produces good imaging quality for the
1564
shallow layers and it has better imaging accuracy. In addition, our
new method produces good imaging results with comparable ac-
curacy and resolution with the traditional space-time-domain
GBM.

It is difficult to apply the traditional space-time-domain GBM to
large-scale field data processing due to the larger computational
cost. Experiments show that compared with the traditional space-
time-domain GBM, our new method can improve the computa-
tional efficiency by 39.9e211.4 times in different models. It solves
the key problem of the development of the space-time-domain
GBM and has a good potential. Thus, our method will be a new
fast and flexible tool for seismic imaging in geologically complex
areas.
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