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a b s t r a c t

The classification of low permeability-tight reservoirs is the premise of development. The deep reservoir
of Shahejie 3 member contains rich low permeability-tight reserves, but the strong heterogeneity and
complex micro pore structure make the main controlling factors subjective and the classification
boundaries unclear. Therefore, a new indicator considering the interaction between fluid and rock named
Threshold Flow Zone Indicator (TFZI) is proposed, it can be used as the main sequence of correlation
analysis to screen the main controlling factors, and the clustering algorithm is optimized combined with
probability distribution to determine the classification boundaries. The sorting coefficient, main throat
radius, movable fluid saturation and displacement pressure are screened as the representative param-
eters for the following four key aspects: rock composition, microstructure, flow capacity and the inter-
action between rock and fluid. Compared with the traditional probability distribution and clustering
algorithm, the boundary of the optimized clustering algorithm proposed in this paper is more accurate.
The classification results are consistent with sedimentary facies, oil levels and oil production intensity.
This method provides an important basis for the development of low permeability-tight reservoirs.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Low permeability-tight sandstone oil resources are abundant
and widely distributed in China, which are becoming research
hotspot due to the huge resources and broad exploration prospects
(Jiang et al., 2015; Zou et al., 2015; Zhang et al., 2016). Compared
with conventional oil reservoirs, low permeability-tight sandstone
generally experiences destructive diagenesis, such as strong
compaction and cementation, it is easy to cause smaller pores and
complex pore throat connection (Shao et al., 2017; Li et al., 2018;Ma
et al., 2018; Zhang et al., 2022; Chen et al., 2020). Reservoir quality
troleum Resources and Prospecting
n).

y Elsevier B.V. on behalf of KeAi Co
is key for low permeability-tight sandstone oil reservoir evaluation,
which determines the oil content and production capacity. How-
ever, it should be noted that these reservoirs usually have very poor
porosity and permeability relationship. For example, reservoirs
with similar porosity may have distinct permeability while reser-
voirs with very high porosity may exhibit an ultra-low perme-
ability. Therefore, the conventional reservoir classification methods
are not applicable for the evaluation and classification of low
permeability-tight sandstone reservoirs.

Generally, there are two main methods for the reservoir classi-
fication. One is qualitative evaluation based on technologies, such as
, China University of Petroleum (Beijing), Beijing, 102249, China.
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production, logging and seismic results (Li et al., 2011; Feng et al.,
2020; Ashraf et al., 2019; Ali et al., 2020; Sohail et al., 2020). How-
ever, these methods are mostly macroscopic and qualitative for the
reservoir evaluation. And the huge cost is another limit for the
practicability of the qualitative evaluation. In addition, more so-
phisticated classification is needed for low permeability-tight res-
ervoirs which always comprised of fine grained lithologies. The
other method is quantitative evaluation based on mathematical
methods, such as fuzzy evaluation, grey correlation, hierarchical
analysis, and machine learning (Qian et al., 2018; Wang et al., 2019;
Gao et al., 2010; Yu et al., 2020; Li et al., 2008). Comparatively, these
mathematical methods can realize the quantitative evaluation and
classification of low permeability-tight reservoirs. However, the
screened classification factors are mostly subjective which lacks
strict screening and evaluation. In addition, the classification
boundaries are always obscure with obvious overlap. Thus, the
screening of the main controlling factors and the determination of
classification boundaries are very important for quantitatively
classification of low permeability-tight reservoirs.

The factors for reservoir classification are required to be repre-
sentative. Thus, correlation analysis is often used to screen themain
controlling factors, and the screenion of the main sequence is key
for correlation analysis (Chen et al., 2022a). Scholars choose
different main sequences for correlation analysis, such as oil pro-
duction, permeability and porosity (Wang et al., 2013; Tu et al.,
2012). Although the production capacity can reflect the reservoir
property to some extent, it is also greatly affected by the production
system. Similarly, considering the high heterogeneity of low
permeability-tight reservoirs, it is unreasonable to screen perme-
ability or porosity as the main sequence. Therefore, a comprehen-
sive indicator which can be used as the main sequence to
characterize the physical properties of reservoirs is necessary.

Based on the screened factors, reservoirs are evaluated and
classified into several types by different methods, such as analytic
hierarchy process, machine learning and fuzzy logic (Hu et al., 2019;
Shi et al., 2019; Wang et al., 2021; Artun and Kulga, 2020; Dong
et al., 2017; Zhou et al., 2021). However, previous studies on the
screened initial control input value are mostly subjective, which
may lead to unreasonable reservoir classification results. In addi-
tion, another problem of previous research is that the boundaries of
the classification factors are always unclear due to the limited data.
Cluster algorithm is a multivariate statistical analysis method to
classify samples, and it is widely used in reservoir classification
because of its good applicability to highly heterogeneous reservoirs
(Zhao et al., 2018; Szab�o et al., 2019; Oliveira et al., 2020; Mahjour
et al., 2020). However, it should be noted that cluster analysis re-
quires high integrality and accuracy of data, which is greatly
affected by the amount of data. Thus, it is necessary to optimize the
clustering algorithm.

In this paper, a database contains 18 characteristic factors of
452 natural rocks from 10 wells is established. On this basis, a
new indicator named “Threshold Flow Zone Indicator” (TFZI) is
proposed as the main sequence of correlation analysis, and the
main controlling factors are screened by Grey correlation, Pearson
correlation, Kendall correlation and Spearman correlation. Then,
classification coefficients are calculated by both of multivariate
analysis and grey evaluation, and multi-information super-
position method is used to obtain a new indicator named
“Comprehensive Classification Coefficient” (Z) to further improve
the rationality of classification. Moreover, to avoid the conven-
tional problems of fuzziness and overlap of classification
boundaries, a clustering algorithm combined with probability
distribution is proposed. Finally, sedimentary facies, oil levels and
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oil production intensity are used to validate the reliability and
practicability.

2. Methodology

Firstly, the database of low permeability-tight reservoir is
established, and the main controlling factors are screened by the
correlation analysis. Then, multi-information superposition based
on multivariate analysis and grey evaluation is used to compre-
hensively and quantitatively evaluate the reservoir. Finally, the
classification boundaries are determined by the optimized clus-
tering algorithm combined with probability distribution.

2.1. Database construction

Based on a series of tests including permeability, porosity, clay
content, threshold pressure gradient (TPG), mercury injection
capillary pressure (MICP) and nuclear magnetic resonance (NMR), a
reservoir classification database with 452 samples of natural cores
is established from 10 typical wells of low permeability-tight res-
ervoirs, as shown in Table 1.

2.2. Screenion of the main controlling factors

In order to ensure factors objectively and representatively, Grey
correlation, Pearson correlation, Kendall correlation and Spearman
correlation are used in this paper to screen the main controlling
factors of reservoir classification. According to the degree of simi-
larity or difference of the development trend among the factors,
grey correlation can measure the correlation degree among factors.
Pearson correlation is mainly used tomeasure the linear correlation
between data, Spearman correlation and Kendall correlation are
mainly calculated by the rank of data matrix (Chen et al., 2022b).

2.2.1. Screenion of the main sequence
The main sequence of the correlation analysis is that one of the

factors which is arranged in a certain order, it can reflect the nature
of the judged objects, and the relationship between the judged
objects and their influencing factors. As shown in Fig.1, the porosity
and permeability of the natural core samples of low permeability-
tight reservoirs are not closely related. For the same porosity, the
permeability varies by 2e3 orders of magnitude. Thus, we proposed
a new indicator named Threshold Flow Zone Indicator (TFZI) as the
main sequence.

According to micropore structure and physical properties of the
reservoir, the “Flow Zone Indicator” (FZI) was proposed to divide
the reservoir flow unit (Amaefule et al., 1993):

Based on the mean hydraulic unit radius (rmh), as shown in Eq.
(1), Kozeny and Carmen applied this concept to Poisseuille's and
Darcy's Laws, and deduced the relationship between porosity and
permeability as shown in Eq. (2).

rmh ¼ Cross sectional area
Wetted perimeter

¼ Volume open to flow
Wetted surface area

(1)

K ¼4er2

8t2
¼ 4e

2t2
ðr
2
Þ2 ¼ 4er2mh

2t2
(2)

The mean hydraulic radius can be related to the surface area per
unit grain volume (Sgv) and effective porosity as follows:

Sgv ¼2
r

4e

ð1� 4eÞ
¼ 1

rmh
ð 4e

1� 4e
Þ (3)



Table 1
Reservoir classification database.

Order Factor Symbol Data sources Order Factor Symbol Data sources

1 Permeability K Permeability test 10 Coefficient of homogeneity COH MICP
2 Porosity 4 Porosity test 11 Sorting coefficient SC MICP
3 Main throat radius TRmain MICP 12 Lithology factor LF MICP
4 Variable coefficient VC MICP 13 Median pressure MP MICP
5 Movable fluid saturation MFS NMR 14 Median throat radius TRmedian MICP
6 Clay mineral content CMC Clay testing 15 Displacement pressure DP MICP
7 Mean throat radius TRmean MICP 16 Coefficient of structure COS MICP
8 Maximum throat radius TRmax MICP 17 Structural characteristic coefficient SC MICP
9 Mercury removal efficiency MRE MICP 18 Threshold pressure gradient TPG TPG

Fig. 1. Porosity and permeability correlation of low permeability-tight reservoirs in
Jidong Oilfield.
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Substituting Eq. (3) for rmh in Eq. (2), the generalized form of the
Kozeny-Carmen relationship is given by Eq. (4).

K ¼ 43
e

ð1� 4eÞ2
½ 1
Fst2S2gv

� (4)

Therefore, the Flow Zone Indicator (FZI) is given by:

FZI¼
0:0314

ffiffiffi
K
4

q

4
1�4

¼ 1ffiffiffiffiffi
Fs

p
tSgv

(5)
Fig. 2. Comparison of pore parameters 41.5/
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where, K is permeability; 4 is porosity; Fs is the shape factor
introduced to account for non-circular capillary tubes; t is the
hydraulic tortuosity; Sgv is the surface area per unit grain volume.

FZI has been widely used and recognized in rock classification
(Lu et al., 2021). Andmany scholars havemade optimization on this
basis, such as the “Shale Zone Indicator” (SZI), the “Modified Flow
Zone Indicator” (MFZI) and FZI* (Redha et al., 2006; Izadi and
Ghalambor, 2013; Soleymanzadeh et al., 2019; Paiaman et al.,
2018). However, for the low permeability-tight reservoirs with
strong heterogeneity, it is not enough to only consider the char-
acteristics of rock. The characteristics of fluid and the interaction
between fluid and rock also cannot be ignored.

When the pressure gradient is lower than a certain limit, the
fluid cannot overcome the flow resistance to flow, there is a mini-
mum threshold pressure gradient, and the threshold pressure
gradient is the embodiment of the interaction between fluid and
rock (Chen et al., 2022c; Miller and Low, 1963; Chen et al., 2022a).
As shown in Fig. 2, compared with pore parameter 41.5/(1�4), the
correlation between threshold pressure gradient and median
pressure and median radius is significantly better, indicating that
threshold pressure gradient can effectively reduce the impact of
reservoir heterogeneity.

Hence, “Threshold Flow Zone Indicator” (TFZI) is proposed to
comprehensively characterize the quality of low permeability-tight
reservoirs:

TFZI¼0:0314
ffiffiffiffi
K

p

T
(6)

where, TFZI is Threshold Flow Zone Indicator; K is permeability; T is
threshold pressure gradient.
(1�4) and threshold pressure gradient.



Fig. 3. Comparison of FZI and TFZI.

Fig. 4. Threshold pressure gradient experimental device.
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As shown in Fig. 3, the poor relationships of FZI VS median
radius VSmedian pressure show that FZI cannot avoid the influence
of reservoir heterogeneity. Conversely, the good relationships of
TFZI VS median radius VS median pressure show that TFZI can
represent the microstructure and seepage capacity of reservoirs
and avoid the influence of reservoir heterogeneity effectively.
2.2.2. Threshold pressure gradient experiment
In this paper, the threshold pressure gradient is measured by

equilibrium method, the experimental device is shown in Fig. 4.
Before the experiment, the core was dried at 108 �C for more than
24 h, then the porosity and permeability were measured respec-
tively, and the formation water (salinity 3979 mg/L) was vacuu-
mized. Subsequently, the core was filled into the core gripper and
the equipment was assembled. The upper overburden pressure and
formation pressure were gradually pressurized with a step length
of 2 MPa and an interval of 30 min. The pressure was kept constant
1530
and the temperature was heated to 100 �C. The injection pump
injected simulated oil (0.6 mPa s) at different pressures, and each
pressure was stable for 20 min. Finally, turn off the displacement
pressure, wait for the pressure to stabilize, record the pressure
monitoring indication every 1 h, three consecutive errors less than
4% is qualified. At this point, the pressure is theminimum threshold
pressure, and the pressure gradient is the minimum threshold
pressure gradient.
2.2.3. Nuclear magnetic resonance experiment
The NMR responses of bound fluid and movable fluid are

different. There are obvious differences between movable fluid and
bound fluid in NMR T2 spectrum: movable fluid shows larger T2
relaxation time and bound fluid is contrary.

MacroMR12-150HeI large-scale nuclear magnetic resonance
imaging analyzer is used in the experiment. Before the experiment,
the samples were dried for 24 h at 105 �C, and the dry weight was



Fig. 5. Determination process of classification boundaries.
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weighed. The dry samples were put into NMR equipment to test T2
spectrum signal. Then, the sample was vacuumized (�0.1 MPa) for
2 h, and saturated oil was pressurized (15 MPa, 12 h). The saturated
sample was taken out, and the sample surface was wiped with a
wet paper towel to weigh the wet weight. Then, the sample was
placed in a nuclear magnetic equipment to measure the T2 spec-
trum and nuclear magnetic image of the saturated sample. The
relation between oil volume and NMR semaphore is established,
and the volume and saturation of saturated oil in core are calcu-
lated by weighing method and NMR method respectively. A back
pressure of 4 MPa was set at the outlet end, and heavy water was
injected at different pressure until the spectral line no longer
changed. 2e3 T2 spectra and 1 image were tested at each injection
pressure. Finally, the movable fluid in the pores was calculated
according to the spectral line variation.

2.2.4. Mercury injection capillary pressure experiment
Different from the conventional mercury injection, the low ve-

locity of constant velocity mercury injection (usually 0.00005 mL/
min) can ensure the quasi-static mercury injection process. The test
results can provide capillary pressure curves of pores and throats
respectively, and provide rock micro structure characteristic pa-
rameters such as pore radius distribution, throat radius distribution
and so on.

ASPE-730 Automated System for pore examination was used in
the experiment. Before the experiment, the core was washed and
dried, and then the porosity and permeability were measured. Mer-
cury is injected at a constant speed (0.00010mL/min), themaximum
mercury inlet pressure is 900 psi, and the temperature is 25 �C.

2.3. Comprehensive and quantitative evaluation

The complex reservoir classification can be transformed into a
systematic mathematical operation process by quantitative evalu-
ation such as the multivariate analysis method and the grey cor-
relation method. In this study, both methods are screened for
further multi-information superimposition to obtain a compre-
hensive classification coefficient (Z).

2.3.1. Multivariate analysis
The reservoir classification is affected by many factors, thus, a

comprehensive indicator which can reflect reservoir characteristics
synthetically and quantitatively is needed (Bertolini et al., 2015).

According to the positive and negative effects of various factors
on reservoir properties, themain controlling factors are normalized
and combined:

M ¼ ln
ðR1=R1maxÞðR2=R2maxÞ,,,ðRi=RimaxÞ�
P1

�
P1max

��
P2

�
P2max

�
,,,

�
Pj
�
Pjmax

� (7)

whereM is the multivariate classification coefficient; Ri is the main
controlling factor which is positively related to the effective
reservoir space and actual percolation ability; Pj is the main con-
trolling factor which is negatively related to the effective reservoir
space and actual percolation ability.

2.3.2. Grey evaluation
Multivariate analysis regards the degree of influence of each

main controlling factor on reservoir quality as the same. Using grey
evaluation method to determine the weight coefficient of the main
controlling factors can objectively and quantitatively reflect the
importance of the main controlling factors (Song et al., 2007).
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The weight of each main controlling factor is determined by the
result of correlation degree:

ai ¼
riPn
1ri

(8)

where ai is the weight of each factor; ri is the correlation degree of
each factor.

Considering the weight of the main controlling factors, the
samples are evaluated with grey system theory:

G¼
Xn

i
R0i,ai �

Xn

j
P0j,aj (9)

whereG is the grey classification coefficient; R'i is the normalization
value of main controlling factor which is positively related to the
effective reservoir space and actual percolation ability; P'j is the
normalization value of main controlling factor which is negatively
related to the effective reservoir space and actual percolation
ability.
2.3.3. Multi-information superimposition
The concept ofmulti-information superimposition is to combine

many kinds of relevant information screenively according to a
certain algorithm to obtain the combined information and realize
further comprehensive evaluation. A new indicator named
comprehensive classification coefficient (Z) which describes the
comprehensive property of low permeability-tight reservoirs, is
proposed by multiplying multivariate classification coefficient (M)
and grey classification coefficient (G):



Fig. 6. Correlation degree of Speraman correlation, Pearson correlation, Kendall cor-
relation and grey correlation.

Fig. 7. Conversion relationship between logging permeability and TFZI.
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Z¼M � G (10)

where Z is comprehensive classification coefficient; M is the
normalized multivariate classification coefficient; G is the
normalized grey classification coefficient.

2.4. Identification of classification boundaries

The K-means clustering algorithm is an iterative clustering
analysis algorithm to divide M points in N dimensions into K
clusters so that the within-cluster sum of squares is minimized. The
procedure is to divide the data into K groups, randomly screen k
objects as the initial cluster centers, and then calculate the distance
between each object and each seed cluster centers, assign each
object to the nearest cluster center. Clustering terminates when any
of the three conditions are met: no object is assigned to a different
cluster, no new cluster center is assigned, and the sum of squares of
error is minimum (Hartigan and Wong, 1979).

It is not practical to require that the solution has minimal sum of
squares against all partitions, except whenM,N are small and K¼ 2.
Due to the limitation of time and cost, it is not practical for oilfield
to provide enough data to fit the classification boundaries. This
paper uses the sample data that can fully represent the reservoir
properties of the area to establish the cumulative distribution of
comprehensive classification coefficient Z, and the classification
boundaries are divided by combining with K-means clustering al-
gorithm. The determination process of classification boundaries is
shown in Fig. 5.
Table 2
Correlation degree between different factors and TFZI.

Factor Correlation degree Rank

TFZI 1.000 /
Permeability 0.945 /
Porosity 0.458 /
Sorting coefficient 0.893 1
Variable coefficient 0.676 2
Lithology factor 0.460 3
Structural characteristic coefficient 0.344 4
Coefficient of structure 0.206 5
Coefficient of homogeneity 0.053 6
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3. Results and conclusion

First, the main controlling factors are screened, on this basis,
reservoirs are evaluated comprehensively and quantitatively. Then,
classification boundaries are determined, and finally, the reliability
and practicability are validated.

3.1. Screenion of the main controlling factors

It is believed that the rock composition, the rock microstructure,
the fluid flow capacity, and the interactions between rock and fluid,
are four main aspects for the reservoir characterization. Thus, in
this paper, we screened 15 easily obtained factors to represent the
reservoir quality from different aspects.

On this basis, as shown in Fig. 6, Grey correlation, Pearson cor-
relation, Kendall correlation and Spearman correlation, are used
and evaluated comprehensively to screen the representative pa-
rameters for the following reservoir classification. The correlation
degree between different factors and TFZI is shown in Table 2.

The four factors are screened by correlation analysis from 15
factors which represent the four main aspects of the reservoir: The
sorting coefficient represents the uniformity of rock composition,
the main throat radius represents the rock microstructure, the
movable fluid saturation represents the fluid flow capacity, and the
displacement pressure represents the interaction between rock and
fluid.

Morever, the relationship of logging permeability and TFZI is
established to improve the practicability. As shown in Fig. 7, it obeys
the quadratic relationship. Also, the relationship of TFZI with the
four main controlling factors are plotted in Fig. 8. The fitting degree
Factor Correlation degree Rank

Displacement pressure 0.784 1
Median pressure 0.714 2
Mercury removal efficiency 0.123 3
Main throat radius 0.899 1
Mean throat radius 0.875 2
Median radius 0.829 3
Maximum throat radius 0.774 4
Movable fluid saturation 0.842 1
Clay mineral content 0.464 2



Fig. 8. Relationship of TFZI with main controlling factors.
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is acceptable for field application. Thus, with the logging perme-
ability, it can be easily applied to actual wells by the new classifi-
cation method.

3.2. Comprehensive and quantitative evaluation

The weights of the main controlling factors are shown in Table 3
by the above formula.

As shown in Fig. 9, the main controlling factors have a good
correlation with multivariate classification coefficient (M) and grey
classification coefficient (G), which indicates that these two co-
efficients can comprehensively and quantitatively characterize the
1533
reservoir quality.
Correspondingly, as shown in Fig. 10, the main controlling fac-

tors have a good correlation with Z, which indicates that Z can
comprehensively and quantitatively characterize the reservoir
quality.

3.3. Identification and comparison of classification boundaries

3.3.1. Identification of classification boundaries
Based on the core sample database, the cumulative distribution

of Z is shown in Fig. 11(a), which can reflect the distribution char-
acteristics of Z in the low permeability-tight reservoirs.



Fig. 9. Relationship of main controlling factors with multivariate classification coefficient (M) and grey classification coefficient (G).

Table 3
Weight of main controlling factors.

D.-L. Jiang, H. Chen, J.-P. Xing et al. Petroleum Science 19 (2022) 1527e1541
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Fig. 10. Relationship of main controlling factors with comprehensive classification coefficient Z.

Fig. 11. Determination of classification boundaries.
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Table 4
Comprehensive classification system.

Factor I II III

Main throat radius, mm > 0.85 0.53e0.85 < 0.53
Movable fluid saturation, % > 27.82 18.00e27.82 < 18.00
Displacement pressure, MPa < 0.35 0.35e0.44 > 0.44
Sorting coefficient > 0.49 0.28e0.49 < 0.28
Z > 0.46 0.13e0.46 < 0.13
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The K-means clustering algorithm was carried out for Z, by
combining the assignment of probability distribution, the
Fig. 12. Single factor boundaries analys
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boundaries are well fitted. As can be seen from Fig. 11(b), the
classification boundaries of this method are clearer than traditional
K-means clustering algorithm.

Combining the relationship between main controlling factors
and Z, a comprehensive classification system for low permeability-
tight reservoirs is established, as shown in Table 4, which divides
low permeability-tight reservoirs into 3 categories.
3.3.2. Comparison of classification boundaries
The single factor classification uses an evaluation factor to

classify reservoirs. If the correlation between the factors is poor, it
is of each main controlling factor.



Table 5
Single factor classification of different wells.

Well
number

Production well
section, m

Logging permeability,
mD

TFZI Movable fluid
saturation,
%

Type Displacement pressure,
MPa

Type Sorting
coefficient

Type Main throat
radius,
mm

Type

J23-22 4157.6e4201.4 25.12 6.285 44.65 I 0.13 I 1.34 I 2.04 I
J23-48 3761.0e3767.0 20.71 4.424 42.50 I 0.14 I 1.16 I 1.81 I
J23-21 3738.2e3823.6 14.51 2.353 38.63 I 0.18 I 0.91 I 1.47 I
J32-19 4097.4e4180.0 13.80 2.157 38.09 I 0.19 I 0.88 I 1.43 I
J23-35 4020.0e4109.2 3.13 0.214 23.90 II 0.43 II 0.36 II 0.66 III
J123X9 3754.2e3756.2 1.7 0.097 19.05 II 0.57 II 0.26 III 0.51 III
J32-45 3960.0e4028.8 1.29 0.070 17.03 III 0.65 II 0.23 III 0.45 III

Table 6
Oil production intensity of different types of wells.

Well number Production well section, m Effective reservoir thickness, m Logging permeability, mD Daily oil output, m3/d Z Type Oil production intensity, m3/(d$m)

J23-22 4157.6e4201.4 2.8 25.12 6.10 1.00 I 2.18
J23-48 3761.0e3767.0 5.0 20.71 11.20 0.72 I 2.24
J23-21 3738.2e3823.6 4.4 14.51 6.24 0.40 II 1.70
J32-19 4097.4e4180.0 5.4 13.80 9.19 0.37 II 1.51
J23-35 4020.0e4109.2 11.4 3.13 7.21 0.04 III 0.63
J123X9 3754.2e3756.2 2.0 1.7 1.12 0.02 III 0.56
J32-45 3960.0e4028.8 14.0 1.29 4.35 0.01 III 0.31
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will cause different factors of the same sample to be classified into
different types, which makes the classification of different factors
contradictory. The classification boundaries of the single factor
cumulative probability curves are shown in Fig. 12.

As shown in Tables 5 and 7 typical wells are classified according
to the results of single factor analysis. Taking only one of the main
controlling factors as the evaluation factor, only 4 wells with good
physical properties has a unified classification result, and other wells
with poor physical properties are divided into at least two categories.

On the contrary, as shown in Table 6, the results obtained by
using the comprehensive classification coefficient Z are consistent
and there is no contradiction. In order to establish an accurate
reservoir classification standard, it is necessary to fully consider the
influence of each main controlling factor for comprehensive anal-
ysis. This indicates that our method is very meaningful for the
classification of low permeability-tight reservoirs with poor phys-
ical properties.

3.4. Analysis of classification accuracy

The above research is mathematical and static evaluation based
on micro factors. Here we verify the rationality of this method from
physical properties of macro sedimentary facies, oil levels and oil
production intensity.

3.4.1. Physical properties of different sedimentary facies
The sedimentary facies types of low permeability-tight reser-

voirs in Jidong Oilfield include estuary dams (subdivided into the
main body of the dam, the inner edge of the dam, and the outer
edge of the dam) and riverway.

The characteristics of porosity and permeability distribution are
shown in Fig. 13(a). The physical properties of the dam body are the
best, followed by the riverway, the inner edge of the dam and the
outer edge of the dam. Among them, the main body of the dam and
the riverway are the dominant oil-bearing facies, the inner edge of
the dam which has good physical properties is oil-bearing, and the
remaining sedimentary facies are dry layers.
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The average permeability of the main body of the damwith best
physical properties is 3.02 mD, that of riverway with middle
physical properties is 0.93 mD, and that of the inner edge of the
dam with worst physical properties is 0.87 mD. This is consistent
with the classification result of permeability under the compre-
hensive classification coefficient Z in Fig. 13(c). It can be seen that
the classification boundaries are in good agreement with the per-
formance of the actual sedimentary facies.

In fact, there are mainly three oil levels: oil immersion, oil spot
and no oil. As shown in Fig. 13(b), with the deterioration of physical
properties, the proportion of oil immersion gradually decreases,
and the proportion of no oil is opposite.

Further, we discuss the causes of this difference from the micro
level. As shown in Fig. 14, under the same capillary pressure, the
mercury saturations of reservoir types I, II and III decrease in turn.
For different reservoirs, the higher the sorting coefficient, the more
homogeneous the rock, the larger the throat radius, the smaller the
fluid flow resistance and the easier it is to flow.

In fact, the contribution of different throats to permeability is
different. As shown in Fig. 15, combined classification boundaries,
for type I reservoir (Z > 0.46, K > 3.1 mD), 80% of permeability is
contributed by throat radius above 0.85 mm, and that of type II
reservoir (0.13 < Z < 0.46, 1.1 mD < K <3.1 mD) is above 0.53 mm.
Correspondingly, the permeability of type III reservoir (Z < 0.13,
K < 1.1 mD) is mainly provided by throat radius below 0.53 mm. In
addition, the worse the physical properties of the reservoir, the
smaller the radius of the main throat and the closer it is to the
maximum throat radius. This change is nonlinear and conforms to
the nonlinear seepage law of low permeability-tight reservoirs.

3.4.2. Oil production intensity of different types of reservoirs
Reservoir classification evaluation only uses static geological

factors to classify reservoirs, and it needs to be combined with
productivity to check whether the classification is correct. Ac-
cording to the results of reservoir classification, the oil production
intensity of different types of wells during the stable production
period is analyzed. As shown in Fig. 16, the oil production intensity



Fig. 13. The physical properties of different sedimentary facies and oil levels.
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Fig. 14. Capillary force curves of different types of reservoirs. Fig. 16. Relationship between oil production intensity and comprehensive classifica-
tion coefficient Z.
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of wells type I is greater than 1.70 m3/(d$m), that of wells type II is
0.99e1.70 m3/(d$m), and that of wells type III is less than 0.99 m3/
(d$m).

In addition, the well J32-45 is taken as an example. As shown in
Table 7, the production section is 3960.0e4028.8 m, there are 7
effective oil producing sections, the effective thickness is 14 m and
the average logging permeability is 1.29 mD. It can be concluded
that the well J32-45 belongs to type III with the comprehensive
classification coefficient Z of 0.01. The oil production intensity is
0.33 m3/(d$m). As shown in Fig. 17, the daily oil production data of
well J32-45with a stable production period of 60 days are screened,
and the oil production intensity of the well is 0.31 m3/(d$m), which
is only 6.45% of the error compared with the calculation result of
0.33m3/(d$m). It verifies the reliability of the classificationmethod.
Fig. 15. Relationship between throa
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4. Conclusion

(1) The indicator TFZI, considering the interaction between fluid
and rock, can be introduced as the main sequence of corre-
lation analysis to screen the main controlling factors. The
sorting coefficient, main throat radius, movable fluid satu-
ration and displacement pressure are concluded to play
major roles in the four key aspects: rock composition,
microstructure, flow capacity and the interaction between
rock and fluid.

(2) The accuracy of classification boundaries is greatly affected
by data integrity. Based on comprehensive quantitative
evaluation, the optimal clustering algorithm is combined
t distribution and permeability.



Table 7
Single well analysis.

Well Production well
section, m

Effective well
section, m

Effective
thickness, m

Logging
permeability, mD

Movable fluid
saturation, %

Displacement
pressure, MPa

Sorting
coefficient

Main throat
radius, mm

Oil production
intensity, m3/(d$m)

J32-45 3960.0e4028.8 3960.0e4062.2 2.2 1.2 16.07 0.69 0.22 0.43 0.31
3967.0e3969.2 2.2 2 20.06 0.54 0.28 0.53
4009.8e4012.2 2.4 0.6 10.92 0.93 0.16 0.33
4014.2e4015.8 1.6 2.6 22.21 0.48 0.32 0.60
4020.0e4021.8 1.8 0.6 10.92 0.93 0.16 0.33
4023.2e4025.0 1.8 1.2 16.07 0.69 0.22 0.43
4026.8e4028.8 2 1.1 15.42 0.71 0.21 0.42

Fig. 17. Production performance curve of well J32-45.
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with probability distribution to enhance the accuracy and
reduce the uncertainty classification.

(3) A comprehensive classification system is proposed for the
low permeability-tight oil reservoirs of Jidong Oilfield. The
new method of reservoir classification can be applied to the
other low permeability-tight reservoirs.
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