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a b s t r a c t

The occurrence of microseismic is not random but is related to the physical properties of the under-
ground medium. Due to the low intensity and the influence of noise, microseismic eventually lead to
poor signal-to-noise ratio. We proposed a method for automatic detection of microseismic events by
adoption of multiscale top-hat transformation. The method is based on the difference between the signal
and noise in the multiscale top-hat transform section and achieves the detection on a specific section.
The microseismic data are decomposed into different scales by multiscale morphology top-hat trans-
formation firstly. Then the potential microseismic events could be detected by picking up the peak value
in the multiscale top-hat section, and the characteristic profile obtains the start point with a specific
threshold value. Finally, the synthetic data experiences demonstrate the advantages of this method
under strong and weak noisy conditions, and the filed data example also shows its reliability and
adaptability.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the continuous development of social economy, the de-
mand for energy is increasing day by day. In addition to conven-
tional energy sources such as coal, oil, and natural gas,
unconventional oil and gas have attracted more and more atten-
tion, and shale oil and gas is regarded as an important part of un-
conventional oil and gas (Hu et al., 2021). Hydraulic fracturing is a
widely used conventional oil and gas well stimulation technology
and is one of the key technologies for shale gas reservoir exploi-
tation (Dong et al., 2020). Microseismic monitoring is a technique
used to image the volume of rock stimulated by hydraulic frac-
turing (Albright and Pearson, 1982) and has been extensively
applied to many fields such as oil and gas reservoir dynamic
monitoring, shale gas reservoir exploitation and coal mining
(Phillips et al., 1998; Rutledge et al., 2004; Baig and Urbancic, 2010;
Maxwell et al., 2010). For the research of microseismic monitoring,
how to detect events efficiently and accurately is always an
y Elsevier B.V. on behalf of KeAi Co
interesting topic, especially the automatic detection methods,
which determines the accuracy of subsequent processing and
interpretation.

Many researchers have made great efforts in the research of
automatic detection methods. A big step towards automatic
detection is the proposal of STA/LTA method which select two
windows with different lengths to calculate the energy of the data
in the two windows respectively and regard the point with the
largest energy ratio as the first break time (Allen, 1982; Liu and
Zhang, 2014; Zhang et al., 2017). Higher-order statistics are used
to weak signals detection due to their excellent performance in
removing Gaussian noise and their particularly significant response
to signal abrupt changes (Yung and Ikelle, 1997; Saragiotis et al.,
2002; Kuperkoch et al., 2010). Cross correlation method as a
signal detection method that has been widely used for a long time.
It can effectively detect the unknown signal by cross correlating the
input data and the template waveform (Molyneux and Schmitt,
1999; Gibbons and Ringdal, 2010; De Meersman et al., 2009;
Akram and Eaton, 2016; Tan and He, 2016; Yu et al., 2019). The
continuous wavelet transform can restore the maximum amplitude
waveform of the first arrival wave, at the same time, highlight the
break point time of first arrival to improve the accuracy of picking
mmunications Co. Ltd. This is an open access article under the CC BY license (http://
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Fig. 1. Schematic diagram of the four basic operations of mathematical morphology.
The yellow solid line is signal, the red semi-ellipse is the SE. The green solid line is
dilation result, the magenta solid line is erosion result, the blue point line is the
opening result, and the black point line is the closing result.
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first arrival (Zhang et al., 2003; Mousavi and Langston, 2016;
Mousavi et al., 2016; Wang et al., 2020). Envelope functions can
produce an outline of the seismogram where every point on the
outline is greater than or equal to zero. An envelope function can
reduce the meaningless LTAs and STAs due to positive and negative
amplitudes and improve the automatic picking (Gou et al., 2011;
Hafez et al., 2013; Long et al., 2020). Akaike information criterion
(AIC) method considers that the signal and noise in the micro-
seismic data have different statistical characteristics, and when the
two signals are fitted, the place with the smallest fitting value is
regarded as the initial arrival time of the microseismic signal
(Leonard, 2010; Diehl et al., 2009; Liu et al., 2017). The empirical
mode decomposition (EMD)-based pickers can not only suppress
the noise while retaining the original signal features to the greatest
extent, but also highlight and enhance the first-arrival information
features, thereby improving the picking accuracy (Kirbas and Peker,
2018). In recent years, more and more machine learning algorithms
have also been used for weak signal detection (McCormack et al.,
1993; Muller et al., 1998; Provost et al., 2017; Rouet-Leduc et al.,
2017; Shahnas et al., 2018; Huang, 2019; Zhou et al., 2020; Zhang
et al., 2021; Yuan et al., 2022).

The energy ratio based algorithms were more efficient in
terms of computational speed compared with other algorithms
and can provide reasonably accurate and precise arrival picks.
The STA/LTA technique remains one of the most popular methods
because of its simple principle, and generally performs well for
mildly or moderately noisy data. However, the STA/LTA method
shows great inadaptability in some cases of low SNR. If that ratio
is higher than a threshold value, the arrival of an event is
declared, and a corresponding arrival time is calculated. But it is
hard to set some parameters to avoid false triggers if the ratio is
lower than the threshold value (Trnkoczy, 2012). Hence, algo-
rithm's performance under the low SNR condition is the focus of
research.

As a signal-processing methodology, mathematical
morphology (Matheron, 1975) has been applied successfully to
many fields, such as vision detection (Haralick et al., 1987;
Vincent, 1993), computer vision (Peng et al, 2010), and medical
image analysis (Mukhopadhyay and Chanda, 2000, 2002). It was
first introduced into seismic data processing for suppressing
noise as mathematical morphological filtering (Zheng and Wang,
2003; Li et al., 2005; Wang et al., 2005), unlike other denoising
methods, it does not damage the signal components. Multiscale
morphology is a commonly used method in mathematical
morphology. It can decompose the signal into corresponding
scales for related analysis and processing according to the char-
acteristics of the signal on different morphological scales. It was
introduced into seismic data processing and has commendable
results on noise attenuation (Wang et al., 2008; Duan and Wang,
2010). Recently, morphology and multiscale morphology has
been widely used in seismic energy dispersion compensation (Yu
et al., 2014), the microseismic denoising (Li et al., 2016), micro-
seismic weak signal detection (Huang et al., 2017a; Shang et al.,
2019, 2020; Jiang et al., 2020), fracture-vug identification and
extraction (Li et al., 2019) and seismic image interpolation
(Huang and Liu, 2020).

Here, a new method is proposed for microseismic signal
detection based on multiscale top-hat transformation section
which is one type of mathematical morphological algorithm. The
proposed method is applied on both synthetic and field examples.
In addition, the performances between this approach, AIC method
and STA/LTA method are compared, and the results show its su-
periority to conventional approaches especially under the low SNR
conditions. The advantages and disadvantages of the proposed
method also be discussed.
2028
2. Detection method

2.1. Mathematical morphology

Mathematical morphology realizes the computation process by
performing operations between the signal and the structural ele-
ments (SEs). A SE is a set of elements that can be shifted across the
signal. Dilation and erosion are the two basic operations in math-
ematical morphology theory. These two operations make up
different complex subsequent operations through certain permu-
tations and combinations to achieve different functions. The one-
dimensional gray dilation and erosion are expressed as follows
(Huang et al., 2017b):

ð f 4 b ÞðzÞ¼maxf f ðz� xÞþ bðxÞ : x2Bg (1)

ð f Q b ÞðzÞ¼min f f ðzþ xÞ� bðxÞ : x2Bg (2)

where 4 is the dilation operation, Q is the erosion operation,
f ðxÞ is the signal, bðxÞ is the elements in SE, B is the number SE set.

Opening and closing are the two operations formed by the
combination of dilation and erosion: the operation that erosion
followed by dilation is the opening, and the operation that dilation
followed by erosion is the closing. These two operations are defined
as follows (Serra, 1982):

f +B ¼ fQ В4 В (3)

f � B ¼ f4 В Q В (4)

where o is the opening operation, � is the closing operation,4 is
the dilation operation and Q is the erosion operation. Fig. 1 shows
the results of four basicmorphological operations using an elliptical
SE on a Ricker wavelet signal. The result of dilation operation is
always above the original signal, while erosion result is always
below the original signal. Most of the opening and closing results
are consistent with the input wavelet, except for the peak in
opening and trough in closing outputs. This phenomenon indicates
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that the opening operation can be used to eliminate the sharp
peaks, and the closing operation can eliminate the sharp troughs.

2.2. Multiscale top-hat transformation

According to the experiences in the field of image processing,
morphological top-hat transformation is very practical for
extracting tiny shapes and details from the original image. The
detection of weak signals is realized by take this advantage. The
top-hat transformation contains two types of operations: the white
top-hat transformation, and the black top-hat transformation. They
are defined as (Serra, 1982):

W Hatðf Þ ¼ f � ðf o BÞ (5)

B Hatðf Þ¼ ðf � BÞ � f (6)

where W Hat is the result of white top-hat transformation,
B Hat is the result of black top-hat transformation. f is the input
signal, B is the SE, ο is the opening operation and � is the closing
operation. Fig. 2 and Fig. 3 is the diagram of two types of top-hat
Fig. 2. Diagram of white top-hat transformation, where (a) is the original data, (b) is
the opening result, and (c) is the white top-hat transformation result. The length of SE
is 181.

Fig. 3. Diagram of black top-hat transformation, where (a) is the original data, (b) is
the closing result, and (c) is the black top-hat transformation result. The length of SE is
181.
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transformations. The results of both two transformations are
nonnegative. The white top-hat transformation can be used for
detecting the peak, while the black top-hat transformation can be
used for detecting the trough. With the length of the SE is bigger
than the signal, top-hat transformations can extract all the peak
and trough waveforms in the signal.

The top-hat transformation section of the signal is gotten
(Mukhopadhyay and Chanda, 2001, 2002) by:

Top_Hatðf Þ ¼ W Hatðf Þ þ B Hatðf Þ
2

(7)

Fig. 4 shows the input data (blue line) and its top-hat trans-
formation section. Based on prior information, the black part in
Fig. 4a are microseismic signals need to be detected, and its start is
the first break (the red star). The position of the maximum value of
the top-hat transformation section in Fig. 4b corresponds to posi-
tion of themaximumvalue of themicroseismic signal in Fig. 4a. The
starting point (the bule star) of the black part in Fig. 4b, that is, the
position of the first non-zero point corresponds to the position of
the red star in Fig. 4a. This provides an idea for detecting the



Fig. 4. Diagram of microseismic signal detection by top-hat transformation. (a) is the
original data, (b) is the top-hat transformation section. The black parts in (a) are
microseismic signals of the original data, and the black parts in (b) corresponding to
the black parts in (a). The length of SE is 181.

Fig. 5. Comparison of top-hat transformation section under different types of SEs. (a) is the o
to (d) are top-hat transformation sections obtained using rectangular, triangular, and elliptic
black part in (b) is from the start point of top-hat transformation section to the maximum
maximum value point to the maximum value point.
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microseismic signal, that is, firstly by finding the position of the
maximumvalue of the top-hat transformation section to determine
the position of the maximum absolute value amplitude of the
microseismic signal, and then using the first non-zero point before
the maximum value in the top-hat transformation section to
determine the first break.

Figs. 5, 6 and 7 demonstrate the influence of SE type, SEs' height,
and SEs’ length on the top-hat transformation section. The same
original data as in Fig. 4 was used in these two picture, and based on
prior information, the black part in Fig. 5a, Fig. 6a and Fig. 7a are
from the first break to the maximum amplitude point of the
microseismic signal. The black part in Fig. 5b to Fig. 5d show that
the top-hat transformation sections obtained using elliptical SEs
are the best for microseismic signal detection. The black part in
Fig. 6b to Fig. 6d show that the top-hat transformation section
obtained using the SEs with a height slightly greater than the
original signal maximum are the best for microseismic signal
detection. The black part in Fig. 7b to Fig. 7d show that the top-hat
transformation section obtained using the SEs with a length slightly
greater than the original signal maximum are the best for micro-
seismic signal detection.

In microseismic data processing, the received signal usually
contains different scales of signals. Hence, only one scale SE is
difficult to achieve the ideal processing effect. In this respect, a
multi-scale version of top-hat transformation is developed for
weak signal detection. The multiscale opening and closing opera-
tion are defined as follows (Matheron, 1975):

f + Bn ¼ fQBn4Bn (8)

f � Bn ¼ f4BnQBn (9)
riginal data, the black part is from the first break to the amplitude maximum point. (b)
al SEs, respectively. All types of SEs have a height of 0.2 and a length of 49 samples. The
value point. The black part in (c) and (d) are from the first non-zero point before the



Fig. 6. Comparison of top-hat transformation section under different heights of SEs. (a) is the original data, the black part is from the first break point to the amplitude maximum
point. (b) to (d) are top-hat transformation sections obtained using SEs with heights of 0.01, 0.2, and 1, respectively. All SEs are elliptical SEs and have a length of 49 samples. The
black part in (b) is from the start point of top-hat transformation section to the maximum value point. The black part in (c) and (d) are from the first non-zero point before the
maximum value point to the maximum value point.

Fig. 7. Comparison of top-hat transformation section under different lengths of SEs. (a) is the original data, the black part is from the first break point to the amplitude maximum
point. (b) to (d) are top-hat transformation sections obtained using SEs with lengths of 25, 49, and 67 samples, respectively. All SEs are elliptical SEs and have a height of 0.2. The
black part in (b) to (d) are from the first non-zero point before the maximum value point to the maximum value point.
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where Bn is the nth SE. If the initial SE is B, Bn can be obtained by
dilating the initial B itself for n-1 times, and it can be defined as:

Bn ¼B4B4:::4B
⏟

n� 1 (10)

Fig. 8 is the self-dilation of the three types of common SEs. It
indicates that self-dilation does not change the type of SEs, but the
length and height of SEs.

Two kinds of multiscale top-hat transformations are defined as
follows (Bai et al., 2012):
2031
W Hatnðf Þ¼ f � ðf + BnÞ (11)

B Hatnðf Þ¼ ðf � BnÞ � f (12)

where W Hatn and B Hatn are multiscale white top-hat trans-
formation and multiscale black top-hat transformation, respec-
tively. The two types of multiscale top-hat transformations are
shown in Fig. 9 and Fig. 10.

To better analyze the results of multiscale top-hat



Fig. 8. Self-dilation diagram of the three types of common SEs. The three types of SEs are rectangles, triangles, and ellipses. The length of SEs from scale 1 to scale 5 are 37, 73, 109,
145, and 181.

G.-J. Shang, W.-L. Huang, L.-K. Yuan et al. Petroleum Science 19 (2022) 2027e2045
transformation, some amplitude outliers have been added before
the black highlighted parts which is themicroseismic signal need to
be detected, whose values are greater than the peak value of the
original data. The results of both multiscale white top-hat trans-
formation and multiscale black top-hat transformation have the
same tendency. Take the white multiscale top-hat transform as an
example, at the beginning, the results of the white top-hat trans-
formation change significantly with the increase of the length of
the SE (like from scale 1 to scale 4), but the results no longer change
when the length of the SE increases to a certain length (like from
scale 4 to scale 5). Each scale section contains two amplitudes
protruding areas corresponding to the added amplitude outlier
area and the black part of original data respectively, they are
defined as area 1 and area 2 by the order of appearance on the X
axis. In scale 1, the ratio of the maximum amplitude of area 1 and
area 2 is greater than 1, and the maximum value of the white top-
hat transformation is in area 1.With the increase of length of the SE,
the ratio decreases gradually. In scale 5, the result of the white top-
hat transformation is unchanged, the ratio is less than 1, and the
maximum value of this scale is in area 2. The position of the
maximumvalue of thewhite top-hat transformation coincideswith
the position of the peak of the microseismic signal. Similarly, the
multiscale top-hat transformation section like as Eq. (7) can be
gotten:

Top� Hatnðf Þ ¼ W Hatnðf Þ þ B Hatnðf Þ
2

(13)

Fig. 11 is the multiscale top-hat transformation section calcu-
lated by Eq. (13) using the results in Figs. 9 and 10. The multiscale
top-hat transformation can utilize the differences between noise
and signal in different scale SE to separate them in some scale
section and continuously highlight the microseismic signal. Just
like Fig. 9, the scale 4 and scale 5 sections in Fig. 11 have almost no
change, which is reasonable for microseismic signal detection.
Scale 4 section contains two amplitudes protruding areas corre-
sponding to the added amplitude outlier area and the black part of
original data respectively, and they are defined as area 1 and area 2
by the order of appearance on the X axis. The maximum value of
2032
scale 4 section is in the area 2, and its position marked the peak
position of microseismic signal. The starting point of area 2, that is,
the first non-zero point, is consistent with the first break of the
black part in the original data. So, the microseismic signal was
detected by finding the maximum value of a certain scale section
and the first break was determined by the first non-zero point
before the maximum value in the top-hat transformation section.
2.3. Signal detection method

The selection of SEs plays an important role in the multiscale
top-hat transformation section. In some cases, due to low signal-to-
noise ratio (SNR), there is no zero point on the top-hat trans-
formation section and the first break of microseismic signal cannot
be detected. A threshold was set manually to make the values of the
top-hat transformation section that less than the threshold to 0.
Fig. 12 shows the three different top-hat transformation sections
under different thresholds. Compared with the first break of black
part on Fig. 12a, the starting point of the black part on top-hat
transformation section under too small threshold (Fig. 12c) is
smaller, and the starting point of the black part on top-hat trans-
formation section under too large threshold (Fig. 12d) is larger,
neither of which gives an accurate first break result. The starting
point of the black part on top-hat transformation section under
suitable threshold (Fig.12b) coincides with the first break in Fig.12a
which gives an accurate first break result.

The proposed method determines the key parameters such as
the length of the initial SE, the number of scales, the scale selected
for picking, and the threshold through the template, and uses these
key parameters to realize the automatic picking of the first break of
all data without human intervention. The details of the proposed
method are as follow:

(1) Select a record (d) with a relatively high SNR from the
microseismic dataset as the template to determine the scale
section and threshold.

(2) Choose an appropriate length of initial SE (b), number of
scales (N) and a time window, performing multiscale top-hat



Fig. 9. Diagram of multiscale white top-hat transformation, where (a) is original data which black part is microseismic signal, and from (b) to (f) are the results of the multiscale
white top-hat transformation at five different scales. The SEs are elliptical SEs and the length of SEs from scale 1 to scale 5 are 37, 73, 109, 145, and 181.
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transformation in the selected timewindowon the template,
and getting each scale top-hat transformation section (Sn) by
Eqs. (8) to (13).

SnðdÞ¼ d � bn � d + bn
2

;1 � n � N (14)

where bn represents the SE of b self-dilated n-1 times. The length of
initial SE usually is an odd number around 10, which can ensure
that the length of the SE will not increase too much from the pre-
vious scale when it dilates itself. The value of N is determined ac-
cording to the following rules: the height of the SE after being
dilated N-1 times is not one order of magnitude higher than the
maximum value of d.

(3) Normalize all the top-hat transformation section as follows:

S0nðdÞ¼
SnðdÞ

maxðSnðdÞÞ (15)

After normalization, the maximum value on each top-hat
transformation section is 1.
2033
(4) Choose a threshold (h) between 0 and 1 and set all values on
top-hat transformation section less than the threshold to 0.

The threshold is related to the smoothness of the signal, and the
smoother the signal, the smaller the threshold. It can be adjusted by
the detection performance of the template.

(5) Select a top-hat transformation section (the scale number of
this section is marked as m) for microseismic signal detec-
tion. Top-hat transformation sections starting from m no
longer change. Firstly find the maximum value of this
selected section, then find the first non-zero point before the
maximum value as the first break of the microseismic signal.

(6) Apply m and h to the microseismic dataset, achieving the
automatic microseismic signal detection.
3. Synthetic dataset example

To verify the accuracy of the proposed method, three synthetic
examples are taken first. The synthetic microseismic data received
the signal from 12 three-component geophone inwells. The dataset



Fig. 10. Diagram of multiscale black top-hat transformation, where (a) is original data which black part is microseismic signal, and from (b) to (f) are the results of multiscale black
top-hat transformation at five different scales. The SEs are elliptical SEs and the length of SEs from scale 1 to scale 5 are 37, 73, 109, 145, and 181.
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has 36 traces, and each trace has the same Ricker wavelet whose
dominant frequency is 50 Hz. The time sampling interval is 0.5 ms
and the number of time sample is 500. Fig. 13 shows the section of
the noise-free synthetic microseismic records.

Meanwhile, the superiority of the proposed method is verified
by comparingwith the AICmethod and the STA/LTAmethod. Before
verifying the performance of the proposed method applied to
different synthetic data, the concept of signal-to-noise ratio (SNR)
was introduced to measure the quality of the dataset, and it can be
calculated as the following formula.

SNR ¼ 10*log 10

PN

i¼1
signal2ðiÞ

PN

i¼1
noise2ðiÞ

(16)

where signalðiÞ and noiseðiÞ represent the signal and noise of
microseismic records respectively, N is the length of data. The
2034
noise-free data was taken as signal, and then add Gaussian noise
with different energies to the noise-free data.
3.1. High SNR synthetic dataset

First, the proposed method is tested in a high SNR synthetic
data. The SNR is �1 dB and the waveforms are shown in Fig. 14.
Although the total energy of the noise in this data is already greater
than the total energy of the signal, the signal can be seen easily in
Fig. 14. The 5th trace was chosen as the template and the multiscale
top-hat transformation section of the trace can be obtained. After
research, the length of initial SE is 15, the total number of scales is
10, and the threshold is 0.45. The 10 multiscale top-hat trans-
formation sections after normalized are shown in Fig. 15. The scale
sections after scale 5 have little change, and the 6th scale section is
chosen for microseismic signal detection. Fig. 16 shows the wave-
form of 5th trace in both�1 dB and noise-free data and the selected
6th scale section. The waveform of this scale section has a great



Fig. 11. Diagram of multiscale top-hat transformation sections. (a) is original data in which black part is microseismic signal, and from (b) to (f) are the top-hat transformation
sections at five different scales. The SEs are elliptical SEs and the length of SEs from scale 1 to scale 5 are 37, 73, 109, 145, and 181.
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correlationwith themicroseismic signal, and its maximumposition
is the same as that of the microseismic signal, the starting point of
the scale section corresponds to the starting point of the micro-
seismic signal. Based on this, the detection of microseismic signal
can be achieved.

Next, the detection results of the proposed method are
compared with the other two methods. Fig. 17 shows detection
results of�1 dB SNR data by the proposedmethod, AIC method and
STA/LTA method. From a macroscopic view, without adjusting the
initial setting parameters, it seems that all the three methods have
good results.

The detection error is used to numerically evaluate the perfor-
mance which is defined as follows:

EðiÞ¼ jðTðiÞ� TÞ� ðtðiÞ� tÞj*dt (17)
2035
where EðiÞ denotes the detection error for the ith trace
measured in recordings and its physical unit is ms. TðiÞ denotes the
position corresponding to the exact first arrival for the ith trace in a
microseismic record and tðiÞ denotes the identification arrival in
samples. T and t represent the average of TðiÞ and tðiÞ , respectively.
dt denotes time sampling interval. The exact arrivals are obtained
by applying the proposedmethod to the noise free data. If the EðiÞ is
less than a specific value, the detection of that trace is accurate.
Fig. 18 is the histogram of detection errors for the three methods
calculated by Eq. (17). It shows that the detection errors of these
three methods are all smaller for the �1 dB SNR data, the error
threshold is set to 2 ms, and after calculating, the overall detection
accuracy of the proposed method and the STA/LTA method is 100%,
and the overall detection accuracy of AIC method is 77.78%. For data
with high SNR, both the proposed method and STA/LTA method



Fig. 12. Comparison of the top-hat transformation sections under different threshold conditions. (a) is the original data, where the black part is the first break to the maximum
amplitude point. (b) to (d) correspond to the top-hat transformation section under the appropriate, too small, and too large thresholds, respectively, where the start point of the
black part is the first non-zero point before the maximum value point, and the end point is the maximum value point.

Fig. 13. The noise-free synthetic data. The red stars are the first break of microseismic
signal.

Fig. 14. Synthetic data with high SNR. The SNR is �1 dB.
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have excellent performance. The cumulative error was used to
further compare the performance of the three methods which
represents the rule of the total error with the number of traces.
Fig. 19 is the cumulative error of the three methods applied to high
2036
SNR data. As the number with Y label shows, the proposed method
has the smallest cumulative error. The proposed method has the
best performance in microseismic events detection of the high SNR
data.



Fig. 15. All top-hat transformation sections of the 5th trace of �1 SNR data.

Fig. 16. Comparison of waveforms and selected scale section. The black waveform in
(a) is the 5th trace in �1 dB data, the bule waveform in (b) is the 5th trace in noise-free
data, and red waveform in (c) is the 6th scale section.
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3.2. Low SNR synthetic dataset

To further illustrate the applicability of the proposed method,
these three methods are applied to a low SNR microseismic data.
The signal is still the noise-free data in Fig. 13, but the SNR has
dropped to �13 dB. It means the noise is much higher than the
signal. The waveform is shown in Fig. 20. The signal can hardly see
in Fig. 20 due to the low SNR. The traditional methods have diffi-
culty in detection, and it is also a big challenge for the proposed
method. The first trace was chosen as the template and the mul-
tiscale top-hat transformation section of the trace can be obtained.,
the length of initial SE is 9, the total number of scales is 10 and the
threshold is set to 0.65. The 10 multiscale top-hat transformation
sections after normalized are shown in Fig. 21. The scale sections
after scale 6 have little change, and the 7th scale sectionwas chosen
for microseismic detection. Fig. 22 shows the waveform of 1st trace
in both �13 dB and noise-free data and the selected 7th scale
section. The waveform of this scale section has a great correlation
Fig. 17. The detection results of �1 dB SNR data using the three methods. The red ones
in (a) are the detection results of the proposed method, the blue ones in (b) are the
detection results of the AIC method, and the yellow ones in (c) are the detection results
of STA/LTA method.



Fig. 18. The histogram of detection errors of �1 dB SNR data using the three methods.
The red ones in (a) are the detection errors of the proposed method, the blue ones in
(b) are the detection errors of the AIC method, and the yellow ones in (c) are the
detection errors of STA/LTA method.

Fig. 19. The cumulative error of�1 dB SNR data using the threemethods. The red ones in
(a) are the cumulative errors of the proposed method, the blue ones in (b) are the cumu-
lative errors of theAICmethod, and the yellowones in (c) are the cumulative errors of STA/
LTAmethod. The numberwith Y label in the figure is the cumulative error in the last trace.
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with the microseismic record, the position of the area where the
maximum value of the selected section located is consistent with
the peak area of the microseismic signal, the start point position is
consistent with the position of the first break of the microseismic
signal. The detection of microseismic signal can be achieved.

Next, the detection results of the proposed method are
compared with other two method. Fig. 23 shows detection results
of low SNR data by the three methods. It seems like the proposed
method and STA/LTA method perform well, and it requires quan-
titative calculations to compare the performance of the three
methods. Fig. 24 is the histogram of detection errors for the three
methods calculated by Eq. (17). The errors of the three methods are
obviously increased in the case of high SNR data, and the histogram
shows that the proposed method performs better than the other
twomethods in terms of the maximum value of the detection error
or the distribution law. Fig. 25 shows the cumulative errors of the
three methods applied to low SNR data. The cumulative errors of
the three methods are also significantly higher than those of the
Fig. 20. Synthetic data with low SNR. The SNR is �13 dB.
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Fig. 21. All top-hat transformation sections of the first trace of �13 dB SNR data.

Fig. 22. Comparison of waveforms and selected scale section. The black waveform in
(a) is the 1st trace in �13 dB data, the bule waveform in (b) is the 1st trace in noise-free
data, and red waveform in (c) is the 7th scale section.
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high SNR data. As the number with Y label shows, the proposed
method has the smallest cumulative error which is not even half of
the second smallest STA/LTAmethod. The proposed method greatly
reduces the detection error in low SNR data. The proposed method
has the best performance in microseismic events detection of the
low SNR data.
3.3. Denoised low SNR synthetic dataset

In fieldmicroseismic data processing, the low SNR ratio datawill
be denoised, instead of weak signal detection directly on the low
SNR data. In this section, the proposed method is tested in a low
SNR synthetic data after filtering. The low SNR synthetic data is the
data tested in previous section. As the dominant frequency is 50 Hz,
a bandpass filter with 20e80 Hz is used, and the denoised wave-
forms are shown in Fig. 26. In the denoised data, the signal in most
traces can be easily seen. However, just like the 11th trace, the
signal in some traces is a smooth curve, and the signal are not
Fig. 23. The detection results of �13 dB SNR data using the three methods. The red
ones in (a) are the detection results of the proposed method, the blue ones in (b) are
the detection results of the AIC method, and the yellow ones in (c) are the detection
results of STA/LTA method.



Fig. 24. The histogram of detection errors of �13 dB SNR data using the three
methods. The red ones in (a) are the detection errors of the proposed method, the blue
ones in (b) are the detection errors of the AIC method, the yellow ones in (c) are the
detection errors of the STA/LTA method.

Fig. 25. The cumulative error of�13 dBSNRdata using the threemethods. The red ones in
(a) are the cumulative errors of the proposed method, the blue ones in (b) are the cumu-
lative errors of theAICmethod, and the yellowones in (c) are the cumulative errors of STA/
LTAmethod. The numberwith Y label in the figure is the cumulative error in the last trace.

Fig. 26. The denoised waveform of the synthetic data with an original SNR of �13 dB.
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obvious. This is a challenge to the detection performance of the
proposed method. Here again, the first trace record is selected as
the template and the multiscale top-hat transformation section of
this trace can be obtained. The length of initial SE is 9 and the total
number of scales is 10 and the threshold is set to 0.15. The multi-
scale sections that after normalized are shown in Fig. 27. The scale
sections after scale 7 have little change, and the 8th scale section is
chosen for microseismic detection. Fig. 28 shows the waveform of
1st trace in both denoised and noise-free data and the selected 8th
scale section. The waveform of this scale section has a great cor-
relation with the microseismic record, the maximum position of
scale section consistent with that of the microseismic signal, the
start point position is consistent with the position of the first break
of the microseismic signal. The detection of microseismic signal can
be achieved.

Next, the detection results of the proposed method are
compared with other two methods. Fig. 29 shows detection results
of denoised low SNR data by the three methods. As for 11th trace,
2040



Fig. 27. All top-hat transformation sections of the 1st trace in denoised low SNR data.

Fig. 28. The waveforms of original data and the selected scale section. The black
waveform in (a) is the 1st trace, the red waveform in (c) is the 8th scale section.

Fig. 29. The detection results of denoised data using the three methods. The red ones
in (a) are the detection results of the proposed method, the blue ones in (b) are the
detection results of the AIC method, and the yellow ones in (c) are the detection results
of the STA/LTA method.
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the first break detected by both AIC method and STA/LTA method
greatly advanced, which is an obvious wrong result, while the first
break detected by the proposed method is much more reasonable.
Fig. 30 is the histogram of detection errors for the three methods
calculated by Eq. (17). Overall, for the denoised low SNR data, the
proposed method seems to have a well performance, which is also
proved by the maximum value and distribution law of the identi-
fication errors in the histogram of the identification error. Fig. 31
shows the cumulative errors of the three methods applied to the
denoised low SNR data. The cumulative errors of the three methods
are significantly lower than those of low SNR data, but still higher
than those of high SNR data. As the number with Y label shows, the
proposed method has the smallest cumulative error, which is more
than one third smaller than the second smallest STA/LTA method.
The proposed method has the best performance in microseismic
events detection of the denoised low SNR data.
4. Field dataset example

This section, the proposed method is applied to microseismic



Fig. 30. The histogram of detection errors of denoised low SNR data using the three
methods. The red ones in (a) are the detection errors of the proposed method, the blue
ones in (b) are the detection errors of the AIC method, and the yellow ones in (c) are
the detection errors of the STA/LTA method.

Fig. 31. The cumulative error of denoised low SNR data using the three methods. The
red ones in (a) are the cumulative errors of the proposed method, the blue ones in (b)
are the cumulative errors of the AIC method, and the yellow ones in (c) are the cu-
mulative errors of STA/LTA method. The number with Y label in the figure is the cu-
mulative error in the last trace.

Fig. 32. The waveforms of field data. 1e12 traces are X components, 13e24 traces are Y
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data from a field microseismic monitoring project. The field data is
a three-component microseismic record collected by in-well
reception during hydraulic fracturing. The observation system is
composed of 12 three-component geophones that vertically ar-
ranged in the monitoring well in almost a straight line, and the
vertical distance between two adjacent geophones is 30 m. The
time sampling interval of the microseismic records is 1 ms, and the
length is 3008 sampling points. The waveforms of field data are
shown in Fig. 32. The SNR of the X-components and Y-components
are high, the microseismic signals are obvious, and have good
coherence in the lateral direction. The SNR of some traces in the Z
components are low, and it is difficult to detect signals.

In detection, the initial length of initial SE is 13, the total number
of scales is 10 and the threshold is set to 0.5. Scale 7 sections were
selected for signal detection. Fig. 33 shows the detection results of
these three methods. It shows that except for the obvious errors of
the 3rd and 26th detection results in the AIC method, the other
detection results look reasonable. To compare the detection results
of the three methods more precisely, the parts shown in the boxes
components, and 25e36 traces are Z components.
2042



Fig. 33. The detection results of field data using the three methods. The red ones in (a)
are the detection results of the proposed method, the blue ones in (b) are the detection
results of the AIC method, and the yellow ones in (c) are the detection results of the
STA/LTA method.

Fig. 34. The detection details of field data using the three methods. The red ones in (a)
are the details of the proposed method, the blue ones in (b) are the details of AIC
method, and the yellow ones in (c) are the details of the STA/LTA method.
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in each picking result are enlarged respectively. Fig. 34 shows a
zoomed-in detail of the detection results. Except for the obvious
error of trace 26, the detection result of trace 27 of the AIC method
is not the first break of the microseismic signal. As for the STA/LTA
method, the detection results of traces 25, 27, and 29 are not the
first breaks of microseismic signals, which are smaller than the
exact first breaks. The proposed method does not have such
problems. The details show that the proposed method has the best
performance in effective signal detection of the field microseismic
data.
5. Discussions

With the examples of synthetic data and field data, the top-hat
transformationmethod demonstrates its advantages in detection of
microseismic signal. This method is suitable for a variety of
microseismic datawith different SNR and has good noise immunity.
Compared with the traditional STA/LTA method, as the method
utilizes the waveform envelope characteristics of the microseismic
signal, the detection result effectively avoids the drift of the first
2043
break point, with smaller error and higher accuracy.
On the other hand, this method is highly dependent on the key

parameters such as the length of the initial SE, the number of scales,
the scale selected for picking, and the threshold, especially the
length of the initial SE and threshold. The error tolerance of these
parameters is not high. It is very important to choose accurate
parameters.
6. Conclusions

In this paper, a method is proposed for the automatic detection
of microseismic events by multiscale top-hat transformation. In
general, the method takes advantage of the difference between
signal and noise in the different scale top-hat transformation sec-
tion and achieves the detection of signal on a specific section.
Firstly, based on the selected template trace, the appropriate type of
SE, length of initial SE, number of scales and threshold are decided
to get the multiscale top-hat transformation sections, then choose
an appropriate scale section to achieve microseismic events
detection. Finally, the detection of microseismic signals can be
realized by applying these parameters to all the data. Themethod is
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applied on both synthetic and field datasets, which achieves the
accurately detection of microseismic signals. Compared with
traditional methods, the proposed method has more obvious
advantage both under low SNR conditions and when recorded as
smooth curves. All the facts proved that the proposed method is an
effective method for the automatic microseismic signal detection.
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