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a b s t r a c t

The dip-angle-domain common-image gather (DDCIG) is a key tool to separate the diffraction and
reflection imaging results. Reflectors with different spatial geometries produce different responses in
DDCIGs. Compared with Kirchhoff migration, Gaussian beam migration (GBM) is more effective and
robust to overcome the multipathing problem. As a ray-based method, it has explicit angle information
naturally during the propagation. We have developed a 3D DDCIG computational method using GBM,
which obtain both the imaging result and angle-domain gathers with only one pass of calculation. The
angle-gather computation is based on geometrical optics, and multiple angle conversions are imple-
mented under the rules of space geometry, which helps to avoid rounding errors and improve accuracy.
Additionally, the multi-azimuth joint presentation strategy is proposed to describe the characteristic of
omnidirectional dip angles using a finite number of gathers. After using a 2D model to illustrate appli-
cation advantages of DDCIG, we apply the proposed method to two 3D models to test its feasibility and
accuracy. A field data example further demonstrates the adaptability of our method to seismic imaging
for a land survey.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction 1982; Popov, 1982; �Cervený, 1983a). Ever since the basic frame-
Up to date, seismicmigration has beenwidely used in oil and gas
exploration, geotechnical engineering, civil engineering and other
industrial fields. Common migration methods can be categorized
into two groups: ray-based and wave-equation-based migrations.
As one of the major ray-based migration methods, Kirchhoff
migration has high efficiency. But it also has some limitations such
as caustics, shadowandmultipathing problems (Popov,1982, 2002;
Babich and Popov, 1989; Bleistein, 1999; Hill, 2001; Gray et al.,
2002; Liu and Palacharla, 2011). By contrast, wave-equation-
based migration, such as reverse-time migration, has higher im-
aging accuracy. However, Yang et al. (2015a) noted the limited in-
dustrial application of the method because of the vast amount of
memory consumed during the calculation process and the low
computational efficiency due to the multiple calculations of the full
wavefield.

In recent years, Gaussian beam migration (GBM) has come un-
der renewed interest because of its relatively good calculation ef-
ficiency and accuracy (Kachalov and Popov, 1981; �Cervený et al.,
.

y Elsevier B.V. on behalf of KeAi Co
work of GBM was first proposed by Hill (1990, 2001), the imple-
mentation of GBM has beenmainly divided into two schemes based
on traveltime and wavefield.

Traveltime-based GBM depends mainly on the time relationship
of Gaussian beams from the source and receiver, after which the
amplitude of each imaging point can be calculated. Nowack et al.
(2003) and Gray (2005) improved Hill's method by introducing
the local slant stack strategy, which makes it suitable for common
shot and common receiver gathers. Furthermore, Yue et al. (2012)
and Huang et al. (2016) proposed local elevation static correction
and effective neighborhood wavefield approximation to achieve
true-amplitude migration of the complex surface. In the area with
anisotropy, Alkhalifah (1995) improved GBM in anisotropic media
according to the anisotropic ray tracing system proposed by
�Cervený (1972). In addition, after supplementing and modification
of this GBMmethod by Zhu et al. (2007), Duan et al. (2013) and Han
et al. (2014), a lot of advancements in the technique of anisotropic
imaging are noted. Technological advancement has triggered rapid
development of various types of seismic beam migration at the
same time. For example, Nowack (2008, 2011) introduced the idea
of deep focusing to the Gaussian beam theory and developed
methods for focused beam migration and dynamic focused beam
migration. Yang et al. (2015b) optimized the propagation of seismic
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Fig. 1. 3D ray-centered coordinates. The base vector is t, e1, and e2, and the corre-
sponding base coordinates are (s, m, n).
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beams based on Fresnel body ray tracing, and proposed a prestack
Fresnel beam migration method. On the other hand, wavefield-
based GBM depends on the Gaussian beam propagation operator
to describe the forward-propagated and backward-propagated
seismic wavefields. The final image can be achieved according to
the imaging condition applied. Typical methods such as Gaussian
packet migration proposed by �Z�a�cek (2004, 2006) can achieve ac-
curate target-oriented imaging. Geng et al. (2011, 2014) improved
the representation of Gaussian packet in the observed wavefield
and the modified packet not only reduces the redundancy of Gabor
basis function, but also improves the calculation efficiency.
Furthermore, Shi et al. (2016) stacked Delta packet to represent
Green's function in the time domain. On the basis of it, Yang et al.
(2018b) and Yue et al. (2019a, 2019b, 2020, 2021a, 2021b) applied
the linear forward modeling technique and developed a time-
domain least squares Gaussian beam migration method. In gen-
eral, although wavefield-based GBM gives better results compared
to traveltime-based GBM, it requires frequent inverse Fourier
transform during the calculation, which is very time-consuming.

GBM has numerous advantages including its ability to provide a
physical interpretation of seismic wave propagation into the sub-
surface, making it easier to describe wave phenomena in complex
geophysical models (Gray and Bleistein, 2009). This technique is
also powerful in imaging steeply inclined layers because ray tracing
methods are independent of the imaging angle. On the other hand,
Gaussian beam method is very efficient and suitable for imaging
massive field data. Most importantly, it uses complex-valued initial
beam parameters for dynamic ray tracing, which can avoid the
problem of singular amplitude near the caustics. The local plane
wave decomposition in different directions allows it to propagate
independently from different directions to the underground im-
aging point, so the multipathing problem is completely solved.
(Hale, 1992b; Yang et al., 2018a).

The key property of the GBM is that its operator directly con-
tains ray angles during the migration. Therefore, Gaussian beam
method can be used to extract angle-domain gathers conveniently
and quickly. In contrast, when reverse time migration is needed to
represent the relationship between angles of the local space, a
three-dimensional Poynting vector containing angle information
must be additionally calculated and perform a series of variable
substitutions (Thomas and Graham, 2011; Jiang et al., 2017;
Kwangjin, 2017; Liu et al., 2017). This undoubtedly increases
calculation cost due to a huge amount of calculation performed.

The common-image gather (CIG) contains the velocity and li-
thology information of the underground media, which is usually
used for velocity analysis and amplitude versus offset (AVO) anal-
ysis (Gray, 2007). The shot-domain common-image gather (SDCIG)
and the offset-domain common-image gather (ODCIG) are themost
widely-used CIGs due to its simple principle and realizability
(Nolan and Symes, 1996). However, when the multi-wave arrival
phenomenon is intense, it generates virtual values in migration
unavoidably, especially in regions of high lateral velocity contrast
(Huang and Fehler, 2000). To overcome this situation, Xu et al.
(2001) proposed to extract gathers in the opening angle domain
which can provide favorable support for amplitude versus angle
(AVA) analysis and lithology analysis (Cai et al., 2013). However, the
imaging response curve of the reflection layer and the diffraction
point is similar, which is hard to distinguish or separate the
diffraction and reflection energy. This defect can be fixed by dip-
angle-domain common-image gathers (DDCIGs). (Brandsberg-
Dahl et al., 2003; Ursin, 2004). The DDCIGs can separate the
scattering-angle information from reflection layers, which can not
only improve the signal-to-noise ratio of the final gather, but also
have great significance for the study of separation and imaging of
diffraction wave (Kong et al., 2016). Thus, DDCIG is gradually
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becoming one of the most important and commonly used gathers
in the field data processing.

In recent years, wide-azimuth 3D seismic exploration has
gradually become the mainstream (Yao et al., 2019, 2020). Under
this general trend, we try to extract DDCIGs in thewide-azimuth 3D
media based on Gaussian beam prestack depth migration. In this
paper, we first review the principle of GBM, and then analyze the
angle relationship in 3D local space near the imaging point in detail.
Based on the geometric theory, we derive two extraction formulas
of GBM-based DDCIGs. Finally, typical numerical examples and the
field data processing results demonstrate the validity and adapt-
ability of the proposed method.
2. Theory

In this section, we will first briefly review the principle of
Gaussian beam prestack depth migration, and then analyze the
geometric relationship between the vectors in the local three-
dimensional space near the imaging point. Finally, we will intro-
duce two formulas for extracting the dip-angle-domain common-
image gathers (DDCIGs) based on the three-dimensional Gaussian
beam propagation vector.
2.1. Review of Gaussian beam prestack depth migration in 3D
medium

According to �Cervený and P�sen�cík (1983b, 1983c, 1984),
Gaussian beam in the 3D ray-centered coordinates has the
following expression:

uGBðs;m;n;uÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðsÞdet Q ðs0Þ
vðs0Þdet Q ðsÞ

s
exp

�
iu
�
t0 þ

ðs
s0

ds
vðsÞ

�

þ iu
2
qTPQ�1q

�
; (1)

where (s,m, n) represent 3D ray-centered coordinates (see Fig. 1); u
is the circular frequency; v(s) and v(s0) mean the velocity along the



Fig. 2. Illustration of 3D local space. The vector Ps and Pr represent ray vectors of the
downward wavefield from the source and the reverse wavefield from the receiver; as
and ar are their unit representation; the symbol q represents the reflection angle and
the symbol b represents the azimuth; symbols l, h, and k represent the horizontal
plane, reflection plane, and common plane, respectively; the vector n and n' are the
reference vector and its projection on the plane h
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central raypath and at the beginning of the ray, respectively; P and
Q are the complex-valued solutions of dynamic ray-tracing equa-
tions and kinematic ray-tracing equations, which determine the
wavefront curvature and the beam width in a form of a 2 � 2
complex matrix (Popov, 2002; �Cervený, 2005).

The function uGB(s,m,n;u) in Eq. (1) represents the local wave-
field, which is composed of one single beam taking off from the
point source in 3D space. However, we can build Green's function to
describe its global wavefield by integrating over all takeoff angles as
shown in Eq. (2):

Grðx; xr;uÞ ¼ iu
2p

ðpxn

pxm

ðpyn

pym

uGBðx; xr;uÞ
dpydpx

pz
;

Gsðx;xs;uÞ ¼ iu
2p

ðpxn

pxm

ðpyn

pym

uGBðx; xs;uÞ
dpydpx

pz
;

(2)

where Gr(x,xr;u) and Gs(x,xs;u) represent Green's function from the
receiver and source points (xr and xs) respectively; pxm, pxn and pym,
pyn are the minimum and maximum values of ray parameters in x
and y directions. To improve the accuracy while maintaining
computational efficiency, Hill (1990) and Yue et al. (2012) added a
phase and an amplitude correction factor into Eq. (2) respectively.
The factors mentioned above correct for changes in the phase and
amplitude caused by the differences in the near-surface velocity
gradient and elevation. This increases the accuracy level and
doesn't affect the overall calculation efficiency. On the other hand,
we follow Hill's prestack imaging idea that Gaussian beam migra-
tion can be extended to prestack migration by using the updown
imaging principle (Claerbout, 1970; Hill, 2001).

Based on this principle, Zhang et al. (2007) achieved pre-stack
migration by using the correlation-type imaging condition with
Gaussian Beam:
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IðxÞ ¼
ð
2pvðxÞ

iu
Pupðx; xs;uÞP*downðx; xs;uÞdu; (3)

where Pup(x;xs;u) and Pdown(x;xs;u) represent the upgoing (recor-
ded) and the downgoing (source) wavefields, and * denotes com-
plex conjugation. These two wavefields are the key to imaging,
which can be represented with the help of the Green's function in
Eq. (2). Here, we refer to the pre-stack migration formula proposed
by Hill (2001):

IðxÞ¼�1
2p

ð
du

ðð
dxrdyr

ðð
dxsdys

vG*
r ðx;xr;uÞ
vzr

G*
sðx;xs;uÞRðxr;xs;uÞ;

(4)

where Gr(x,xr;u) and Gs(x,xs;u) are the beam representations of
Green's function introduced in Eq. (2); R(xr,xs;u) denotes seismic
records received at geophones.

According to Eqs. (1), (2) and (4) above, we can get the final
imaging value at any point underground in 3D medium with
Gaussian beam.
2.2. Geometric relationship in 3D local space

From the perspective of geometric seismology, if the incident
ray occurs from the source to the position where the upper wave
impedance differs from the lower wave impedance, it will inevi-
tably produce the corresponding reflected ray, which satisfies
Snell's law (see Fig. 2). Without considering the interference of the
converted wave, the transmitted rays that are generated simulta-
neously with the reflection can be regarded as the continuous
propagation of source energy.

After considering the ray theory and the wavefield continuation
in GBM, we construct the Cartesian coordinates in a three-
dimensional local space as shown in Fig. 2. Undoubtedly, if a
point underground can be imaged, Ps and Pr must be a pair of
vectors with physical existence used together for illumination.
Based on this, we construct Ps and Pr at a random location under-
ground. As shown in Fig. 2, the reflection angle (q) is the angle
between two vectors of Ps and Pr. So its formula can be written as

cosðqÞ¼ Ps,Pr

jPsj,jPrj ¼ as,ar; (5)

where the numerator is the scalar product of two vectors, and the
denominator is the product of two vector modules. After simplifi-
cation, it is the scalar product of two unit ray vectors. If half of the
reflection opening angle (q/2) is combined with the depth as two
dimensions to form a gather, we call it angle-domain common-
image gather (ADCIG). Obviously, there are multiple ADCIGs at the
same location in 3D space, which represent different directions.
These ADCIGs are not the same due to the different quality of the
ray illumination under different azimuths. The same situation ap-
plies to DDCIG.

Before studying the azimuth that is a key parameter in DDCIG,
we need to first set n ¼ (1, 0, 0) as the reference direction (see
Fig. 2). By referring to the law of light reflection in physical optics,
we know that the incident ray, the reflected ray, and the normal line
are coplanar. We call it the common plane k. The reflection plane
which is perpendicular to plane k is called plane h and the hori-
zontal plane is named as l (see Fig. 2). With the help of the refer-
ence vector n, the azimuth (b) can be represented mathematically.
It is the angle between the vector n' which is the projection of the
reference vector n on the plane h, and the intersection vector of
plane k and plane h (see Fig. 2).
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It should be mentioned that the value of b in the omnidirec-
tional observation system ranges from 0� to 360�, so the sine
function and cosine function need to be used in combination to
uniquely determine the true value of the azimuth. The formula of
the azimuth is given below, and the detailed derivation is discussed
in Appendix 1:

a¼ as þ ar; (6)

sinðbÞ¼ ðas � arÞ � ðn� aÞ,a
jas � arj,jn� aj,jaj ; (7)

cosðbÞ¼ ðn� aÞ,ðas � arÞ
jn� aj,jas � arj ; (8)

where all the parameters have been mentioned before.
The dip angle (g) of the reflection plane is the plane angle of the

dihedral angle formed by the reflection plane h and the horizontal
plane l (see Fig. 2). Fig. 3 (most of parameters correspond to those
in Fig. 2) can be viewed as a front view of the common plane k in
Fig. 2, that is, the paper surface can be regarded as the above-
mentioned plane k. This paper shows two solutions to represent
g in direct method and indirect method.

First, a direct method for the computation of two side vectors
that form the angle g is formulated. The vector x' ¼ [cos(b), sin(b),
0] (see Fig. 3) can be determined by constructing the intersection of
the horizontal plane l and the common plane k (see Fig. 2), where b
represents the azimuth. From principles of isosceles triangle in the
plane geometry, a' ¼ as e ar (see Fig. 3) is exactly perpendicular to
the normal line, which is parallel to the inclined plane in Fig. 3.
After determining the two side vectors, the expression of angle g

can be written as follows:

cosðgÞ¼ signðgÞ,x
0,ðas � arÞ
jas � arj ; (9)

signðgÞ¼
� 1 ; ðas � arÞ,m<0

�1 ; ðas � arÞ,m>0
; (10)

where m ¼ (0, 0, 1) is the vertical downward unit vector in the
Fig. 3. 2D local coordinate system in the common plane. The symbol g represents the
dip angle.
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three-dimensional Cartesian coordinates, as shown in Fig. 3. The
direct method calculates g directly, which is intuitive and easy to
understand. However, the azimuth b is introduced in the calcula-
tion step. During the computation stage, unavoidable round-off
error arise which lowers the calculation accuracy.

In order to avoid calculation defects of the direct method, we
derive a formula of the indirect method by finding an anglewhich is
equal to the dip angle to perform the transformation. As shown in
Fig. 3, with the help of two parallel lines, a pair of alternate interior
angles are equal in size. At the same time, with the help of two
vertical relationships, two angles that are mutually complementary
to the common angle are equal. Therefore, the angle formed by two
vectors a and m is equal to the dip angle of the reflection plane.
Then the formula of indirect method can be written as

cosðgÞ¼ signðgÞ,m,ðas þ arÞ
jas þ arj ; (11)

signðgÞ¼
� 1 ; ðas þ arÞ,x0 >0

�1 ; ðas þ arÞ,x0 <0
; (12)

where all the parameters have been mentioned before. It should be
noted that the range of dip angle in Eq. (9) is still from 0� to 180�,
but in Eq. (11) it is from 0� to �90� and from 90� to 0�, as the
reflection plane h goes from flat to vertical and then back to flat (see
Fig. 4). Finally, after modification, it can be organized into
from �90� to 90� with the help of Eqs. (10) and (12).
2.3. Calculation of ray parameters based on 3D Gaussian beam

The geometric relationship of three-dimensional local space
near the imaging point has been analyzed and derived in detail
before. The problem to be considered at present is to calculate two
initial ray vectors Ps and Pr.

Equation (1) is the expression of Gaussian beam in the 3D ray-
centered coordinates. As its basic form is a plane harmonic wave,
we can view it as two parts. The part before the exponent is the
initial amplitude, which represents the initial energy of the beam.
The part inside the exponent is the complex time-term, which
Fig. 4. 2D local coordinate system in the common plane (the second case).
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determines the amplitude decay and phase change resulting from
the propagation. We expand the time-term and analyze it in detail:

t ¼ t0 þ
ðs
s0

ds
vðsÞ þ

1
2
qTRe

�
PQ�1

�
q ¼ tðsÞ þ 1

2
qTRe

�
PQ�1

�
q;

(13)

where t represents the time from the beginning to any point on the
beam; t0 is the initial time which covers the response delay of the
geophone in the actual exploration. The second term is an integral.
It represents the ray propagation time from the beginning to the
nearest point on the center ray to the target; qTPQ�1q/2 means the
time of transition from the central ray to the paraxial ray (see Fig.1).

After calculating the traveltime of any point underground, we
can get the slowness vector by calculating the space derivatives of
three base vectors in the Cartesian coordinates:

pk ¼
vT
vxk

; k ¼ 1;2;3 ; (14)

where k ¼ 1, 2, 3 means three directions of the coordinate system.
Inserting Eq. (13) into Eq. (14), we can get the following formula:-
pkðDÞ ¼ pkðBÞ þm
vm
vxk

M11 þ n
vn
vxk

M22 þ
1
2

	
m

vn
vxk

þ n
vm
vxk



ðM12 þM21Þ ; k ¼ 1;2;3 ; (15)
where the point D and B are shown in Fig. 1; m and n are compo-
nents of two directions in the 3D ray-centered coordinates and q ¼
(m, n)T; M ¼ PQ�1 is a 2 � 2 matrix:

ReðMÞ¼Re
�
PQ�1

�
¼

	
M11 M12
M21 M22



: (16)
Fig. 5. The light model and its migration result: (a) velocity model, (b) smoothed velocity m
migration result.
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Based on Eq. (15), three components can be solved in turn to
construct a complete three-dimensional slowness vector. Accord-
ing to properties of the slowness vector and the ray parameter
equivalent, the solution of ray parameters based on Gaussian beam
can be realized.

3. Numerical examples

In this section, we first study the characteristics of the dip-
angle-domain common-image gathers (DDCIGs) in a 2D model.
Then, based on the above theory and algorithm, we select two 3D
models to test the performance of 3D DDCIGs. To further study the
flexibility and robustness of the extractionmethod in this paper, we
apply the new method to land field data from eastern China.

We start with a numerical example to investigate the applica-
tion advantages of DDCIGs. As shown in Fig. 5a, the model consists
of a horizontal layer with constant velocity and four pairs of sym-
metrically slanted layers with different dip angles. Moreover, the
profile of the model is radial like light, so we name it the light
model. At the beginning, we use a staggered-grid finite-difference
method in the numerical simulation to get seismic records. The
accuracy in space and time are eighth order and second order,
respectively. The main frequency is 20 Hz. In addition, a total of 201
shots are simulated with a shot interval of 40 m from the beginning
to the end at the surface. Concurrently, 201 geophones are set up at
intervals of 40 m. The recording time is 2 s, and the time sampling
interval is 2 ms.

Considering the fact that ray tracing requires the second de-
rivative of velocity, Gaussian filtering to the velocity model in
odel, (c) Kirchhoff prestack depth migration result, (d) Gaussian beam prestack depth
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Fig. 5a is applied. Linear smoothing of the model is carried out to
ensure the stability in subsequent calculation of dynamic ray
tracing (Popov et al., 2010). Finally, the background velocity (see
Fig. 6. The extraction results of DDCIGs of the light model: (a) velocity model, (b) DDCIGs
D4 ¼ 3733 m, (f) DDCIGs at D5 ¼ 4266 m, (g) DDCIGs at D6 ¼ 4800 m, (h) DDCIGs at D7 ¼ 600
extraction, and here D means Distance.

Fig. 7. 3D sag model and its migration resu
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Fig. 5b) and seismic records obtained are incorporated into the
calculation framework of GBM. This yields an accurate image as
shown in Fig. 5d. It is worth noting that Gaussian beam method
at D1 ¼ 400 m, (c) DDCIGs at D2 ¼ 2000 m, (d) DDCIGs at D3 ¼ 3200 m, (e) DDCIGs at
0 m, (i) DDCIGs at D8 ¼ 7600 m. White lines in the velocity model indicate locations for

lt: (a) velocity model, (b) GBM result.
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works better than Kirchhoff method (see Fig. 5c) in imaging steep
structures.

Calculation of imaging results and the extraction of DDCIG are
done simultaneously. We select eight positions from the final
result, namely 400 m, 2000 m, 3200 m, 3733 m, 4266 m, 4800 m,
6000 m and 7600 m, respectively. Their corresponding dip-angle
gathers are shown in Fig. 6.

As shown in Fig. 6, dip-angle gathers extracted at different po-
sitions have their own characteristics and are different from each
other. These selected positions correspond to various connections
that are equal or unequal between dip angles and the depth.
Therefore, we can see that DDCIG has the ability to independently
describe the characteristics of the data under the reference of dip
angle and the depth. Specifically, eight gathers of Fig. 6bei can be
divided into two categories of Fig. 6bee and Fig. 6fei. These un-
derground dip angles of Fig. 6bee are all greater than 90� (here we
set the increasing direction of the distance as the positive direction,
Fig. 8. The extraction results of eight-azimuth DDCIGs of Inline equals 900 m and Crossline e
extracted gather.
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that is, 0�, and the range of the dip angle is set from �90� to 90�).
Accordingly, their imaging responses in the DDCIGs are also
concentrated on the left area of �90�e0�. The latter case is
completely opposite. It is a fact that the imaging response of the
slanted layer in the DDCIG is similar to a curve with smiley shape of
a stable phase vertex, and the angle corresponding to the stable
phase vertex is equal to the dip angle of the slanted layer at the
same depth when the migration velocity is completely correct
(Kong et al., 2012). This can be clearly shown in Fig. 6d, g.

The light model is just a two-dimensional slanted layer model.
In this section, we use it to highlight the characteristic and the
application advantages of DDCIG. The second example is a three-
dimensional sag model which is divided into four layers (see
Fig. 7a). The first and last are horizontal layers, the central area
between the second and third layers is designed as a large sag part,
which is similar in shape to a basin in geology. Then, we also use the
staggered-grid finite-difference method in the three-dimensional
quals 1500 m in the 3D sag model. The red number indicate the range of azimuth in the



Fig. 9. Cutaways of the 3D sag model at Inline equals 900 m and Crossline equals 1500 m under different azimuths and results of DDCIGs: (a) azimuth is 45� , (b) azimuth is 90� , (c)
azimuth is 135� , (d) azimuth is 180� . White lines indicate locations for extraction, and the red number indicate the range of azimuth.
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numerical simulation. A total of 10 � 10 shots are simulated with a
shot interval of 200 m in both vertical and horizontal direction.
Meanwhile, 101 � 101 geophones are used for reception with an
interval of 20 m in both vertical and horizontal direction as well.
Significantly, the aspect ratio of the observation system has reached
1:1, which meets the requirement of wide-azimuth acquisition.

The obtained seismic record and the background velocity after
Gaussian smoothing are used as input. 3D GBM result (see Fig. 7b)
output below clearly portrays the potential of ourmethod to describe
eventswith accurate imaging position. Themethod of using Gaussian
beam operator to image the subsurface hasmany advantages such as
high efficiency and natural adaptability to steep structure imaging.
Combination of our proposed technique with 3D GBM and simulta-
neous extraction of 3D DDCIGs during the data migration process is
achieved.

As shown in Fig. 8, it is the eight-azimuth DDCIGs extracted from
theposition of Inline equals 900mandCrossline equals 1500m in the
above three-dimensional sag model. The eight-azimuth refers to
eight azimuths range from 0� to 315� at an interval of 45�. According
to the theory of this paper, we can extract omnidirectional gathers in
the dip-angle domain. However, the following three points must be
considered: (1) limited storage space. By a simple calculation, all
omnidirectional gathers of one point on the surface of the 3D model
mentioned above requires approximately 49.96 MB and the model
has 40,401 such points in total. If all of them are extracted for selec-
tion, 1.93 TB of storage space is required, which is obviously unde-
sirable; (2) if eight azimuths are selected separately from the whole
gather, it can be postulated thatmost gatherswill be affected by low-
frequency interference at different angles resulting in poor imaging
quality; (3) the underground structure has media continuity, that is,
thedipanglepropertyofadjacentazimuthsat the same imagingpoint
changes gradually. Therefore, we can choose to stack several gathers
in a certain range of angles for joint presentation. Finally, eight azi-
muthsofDDCIGs in thispaper are all the results of gather stackwithin
the range of 22.5� on the left and right sides of the azimuth. The
purpose is to fully describe the underground dip angle at the point.

Under this strategy, our final presentation is different from
previous conventional results. As shown in Fig. 8, two curve re-
sponses co-exist at the same depth in one gather, such as 90� gather
and 270� gather (see red circle). Take the 90� gather as an example,
we can infer that the response on the left side is a high-azimuth
effect from 90� to 112.5� by referring to the adjacent higher-
azimuth 135� gather (see yellow arrow). Meanwhile, the response
on the right side is a low-azimuth effect from 67.5� to 90� (see blue
arrow). As a result, by comparing the difference of the response
Fig. 10. 3D diffraction model and its migration
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energy and stable phase vertex positions, we can infer the changing
trend of the dip angle near each azimuth.

Cutaways of the three-dimensional sag model taken at Inline
equals 900 m and Crossline equals 1500 m at four azimuths with
their corresponding DDCIGs are shown in Fig. 9.

The combination of Figs. 8 and 9 proves the accuracy of the 3D
DDCIG extraction method proposed in this paper. Also it highlights
the application advantages such as detailed description of subsurface
structural characteristics of the point imaged and the technique is not
limited to a receiver line since it's omnidirectional. This has the
advantage of being able to achieve accurate spatial imaging results at
the lowest cost in the shortest time (compared to multiple two-
dimensional seismic prospecting in the same exploration area). For
example, according to the responses to the target layer under
different azimuths in Fig. 8, it is possible to construct several cutaways
shown in Fig. 9, and gain familiarity with structural characteristics
near the imaging point.

In addition to its ability of distinguish different types of reflec-
tion energy, DDCIGs also have great advantages in the identification
of diffraction energy. The third model is the three-dimensional
diffraction model, which is used to test the identification ability
of the extraction method for small-scale diffraction objects in this
paper. As shown in Fig. 10a, it has four layers with the first and last
layer horizontal and a curved boundary in between the second
layer and third layer. There is a row of diffraction points above the
layer and there are two rows below it. The difference between these
points is that the upper one is relatively high-speed, and the lower
one is relatively low-speed. So that we can test whether the re-
sponses of these diffraction points are different.

Using the sameprocessingflowof the 3Dsagmodel, GBMresult of
the 3D diffraction model can be finally obtained (see Fig. 10b). In this
figure, events of layers are clear and characteristics of small-scale
diffraction objects are obvious. To different types of diffraction
points mentioned above, 3D GBM can achieve all accurate imaging
results. In addition to the energy difference caused by the depth,
different diffraction points can also have polarity reversals in the
imaging response. Fig. 11 is the result of DDCIGs extracted during the
migration process and the selected position is Inline equals 1000 m
and Crossline equals 1200 m. In order to distinguish the difference
between the reflection energy and the diffraction energy in the
DDCIG, we choose to perform two different gain parameters on the
same gather specially, which are “perc” equals 99.97 in Fig. 11a and
“perc” equals 97.80 in Fig. 11b.

As shown in Fig.11a, combining with the introduction above, we
know that the response of the reflection layer at the DDCIG is an
result: (a) velocity model, (b) GBM result.



Fig. 11. The extraction results of eight-azimuth DDCIGs of Inline equals 1000 m and Crossline equals 1200 m in the 3D diffraction model: (a) perc equals 99.97, (b) perc equals 97.80.
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Fig. 12. 3D land data and its migration result: (a )velocity model, (b) GBM result.
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upward opening curve with smiley shape (see blue box). As for the
diffraction energy, it is known that the diffraction event in the
DDCIG extracted directly above the diffraction point is horizontally
linear (see red arrow). In order to suppress the reflection energy
appropriately and highlight the diffraction energy in Fig. 11a, we
adjust the gain parameter to portray clearer diffraction events (see
red box) in Fig. 11b. It is worth noting that adjustment of the gain
parameter results in reflection energy suppression and enhance-
ment of low-frequency interference (see yellow arrow), but it does
not affect subsequent processing. Compared with diffraction in-
formation, the interference is messy and distributed mainly in the
edge area of main events. In summary, the ability of 3D-DDCIG to
recognize small-scale diffraction objects has been tested and
validated.
Fig. 13. The extraction results of DDCIGs at different positions of 3D land data. The numbe
crossline respectively, the unit is km; the numbers in the lower right corner indicate azim
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Finally, 3D DDCIG technique is applied on a field land data set
from eastern China to verify the feasibility of its industrial appli-
cability. Fig. 12a is the background velocity model constructed by
the traditional ray tomography method, and Fig. 12b is the result
after performing the 3D GBM.

The procedure was repeated and 3D-DDCIGs extracted below
(see Fig.13) shows results of three gathers with the azimuth of 90� at
Inline equals 6600 m and Crossline equals 2500 m, the azimuth of
90� at Inline equals 3900 m and Crossline equals 2500 m, and the
azimuth of 315� at Inline equals 4100m and Crossline equals 3800m.
As shown in Fig. 13, red boxes mark several places with obvious
reflection responses, and theweaker diffraction response, that is, the
linear event can be seen in the place marked by the blue arrow. The
suggested three reasons explain why the diffraction response is not
rs in the lower left corner indicate position coordinates, corresponding to inline and
uth.
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very prominent: (1) the interference of the low-frequency noise
from the actual data is serious (see yellow arrow); (2) the energy of
seismic wave is seriously attenuated by absorption of the media
when it propagates deep; (3) there are many underground reflection
layers, so the reflection energy is strong and the diffraction energy is
submerged in it. However, the diffraction energy can be extracted for
imaging individually by some separation ways such as median
filtering and hybrid Radon transform (Fomel et al., 2007; Bai et al.,
2011; Klokov and Fomel, 2012).

4. Discussion

In this section, we will further discuss our method from three
aspects of computational efficiency, industrialization advantages
and application recommendations.

First and foremost, it is necessary to point out that our method
of extraction is based on Gaussian beam operator, and it has a great
efficiency advantage in theory. But in the migration of 3D land data,
the efficiency advantage of 3D GBM is far less obvious than that of
2D GBM, compared with the same type of wave equation method.
The main reason for this is that we select a full-coverage high-
density ray tracing strategy algorithmically. Rays from sources and
receivers are omnidirectional and at small intervals with multiple
coverage for all imaging points. The benefits of it include: (1) it can
guarantee high imaging accuracy; (2) even if it is extended to the
target-oriented imaging, it will not affect the imaging quality; (3)
true three-dimensional ray tracing can eliminate imaging artifacts
of lateral waves. In addition, considering the optimization of the
computational efficiency, it is possible for us to develop ourmethod
to the variable grid based on the coarse grid algorithm of Hale
(1992a) and the irregular grid algorithm proposed by Popov et al.
(2010). Moreover, we will replace the global scanning by the fast
scanning strategy in the part of the realization of imaging condi-
tions (Zhang et al., 2019).

It is necessary to balance calculation accuracy and efficiency in
industrial production. In the imaging of 3D area, reverse time
migration has higher imaging accuracy. But it has high re-
quirements for memory space, calculation time and velocity
dependence. Kirchhoff migration is currently a leading player in
industry thanks to the superior computational efficiency advan-
tages of ray-based methods. GBM is also a kind of ray-based
method and owns the advantages of efficient imaging. Compared
with Kirchhoff migration, it is more applicable and has no limita-
tions of steep-structure imaging. Therefore, GBM is likely to replace
Kirchhoff migration as the mainstream of industrial production in
the future. At the same time, relying on the ability to distinguish the
differential response to various signals such as reflection, diffrac-
tion and noise interference, 3D DDCIG is widely used in the fields of
scattering-wave separation and imaging. It also provides an
important tool for the identification of small-scale holes and cracks
(Klokov and Fomel, 2012).

We should be careful about the following aspects when using
the technique in industrial applications: (1) separation of diffrac-
tion based on 3D DDCIG needs to consider more azimuth
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information to avoid interference from reflection layers under
certain azimuths; (2) if it is necessary to extract the attribute
characteristics of the target area near a certain azimuth, set the
range and interval of azimuths in the program and perform sub-
azimuth imaging to highlight the imaging contribution under
that azimuth.

5. Conclusions

By using 3D Gaussian beam operator that carries angle infor-
mation, we have developed amethod of 3D DDCIG extraction based
on GBM. This method can be used in the field of diffraction identi-
fication, wavefield separation of reflection and diffraction, diffrac-
tion imaging and seismic attribute analysis in 3D media. Beginning
with the mathematical and physical meaning of Gaussian beam
operator, we obtain the representation of the ray vector after
detailed analysis. Based on the complicated geometric relationship
in the 3D local space near the imaging point, wederive twodifferent
kinds of DDCIG extraction formulas. The first example demonstrates
that DDCIG has an obvious ability to distinguish reflection layers
with different dip angles. The second and third examples show that
our method can successfully identify the energy of reflection layers
and diffraction targets in 3D media. The example of field data pro-
cessing further confirms the conclusions obtained from theprevious
examples and shows its practical application capabilities. Therefore,
our proposedmethod for extracting 3D DDCIG provides an effective
and flexible tool for 3D data processing.
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Appendix 1. Derivation of azimuth formula

In this appendix, we derive the formula of the azimuth in the
three-dimensional local space. In order to explain the relationship
between angles of the local space more clearly, we highlight several
vectors on the basis of Fig. 2.

As shown in Fig. 14, we can reconstruct the process of reflection
with the help of as and ar. Take case a as an example, a'¼ ase ar and
a ¼ as þ ar are perpendicular to each other on the common plane k

(see Fig. 3). The straight line SR represents the intersection of the
reflection plane h and the common plane k, and the a' on it is
exactly the same as the a' mentioned before. n ¼ (1, 0, 0) is the
reference direction vector we agreed before as well.



Fig. 14. Sketch of the reflection plane: (a) azimuth ranges from 0� to 180� , (b) azimuth ranges from 180� to 360� . The orange mark represents the azimuth.
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To represent the azimuth conveniently, we transform the study
plane from the horizontal plane to the reflection plane. After
making the projection vector n' of the reference vector n on the
reflection plane, the azimuth is the angle between a' and n' (see
orange marks in Fig. 14). However, the mathematical expression of
n' depends on the reflection plane h, and it is very difficult to solve
it directly, so we need to convert it again. That is, make the vertical
vectors of a' and n' respectively, and the angle between the two is
the one we need. There is a key message that the vector a coincides
with the normal line. According to the property that normal line is
perpendicular to the reflection plane, a is also perpendicular to it.
Thus, the vector g which is perpendicular to n' can be represented
as g¼ n'� a¼ n� a; Similarly, the vector hwhich is perpendicular
to a' can be represented as h ¼ a' � a ¼ as � ar. What's more, ac-
cording to the right-hand rule, the relative directions of vertical
vectors are the same that are all counterclockwise vertical. In
summary, the azimuth can be represented as the angle between the
vector g and the vector h. So we can get

cosðbÞ¼ g,h
jgj,jhj ¼

ðn� aÞ,ðas � arÞ
jn� aj,jas � arj : (17)

The sine function is also required because of the characteristic of
the inverse trigonometric function that it is impossible to represent
directions from 0� to 360� separately. So we need

sinðbÞ¼ jh� gj
jhj,jgj ¼

1
jhj,jgj ,

h� g,a
jaj ¼ ðas � arÞ � ðn� aÞ,a

jas � arj,jn� aj,jaj ;

(18)

here, in order to reduce the amount of calculation, we use the scalar
product of the unit vector in the same direction to replace the
calculation of vector modulus. The advantage of this is that it can
improve calculation accuracy by avoiding multiple rounding errors,
with improving the calculation efficiency at the same time.
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