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a b s t r a c t

The dispersion curves of real-valued modes in a fluid-filled borehole are widely used in acoustic well
logging. The accurate dispersion curves are the precondition of theoretical analysis and inversion pro-
cess. Generally, these curves can be obtained by solving the conventional dispersion equation for
isotropic formations and most vertically transverse isotropy (VTI) formations. However, if the real-valued
solutions exist when the radial wavenumbers for the formation quasi-P and quasi-S equals to each other,
the existed methods based on the conventional dispersion equation could lead to incorrect results for
some VTI formations. Few studies have focused on the influence of these real-valued solutions on
dispersion curve extraction. To remove these real-valued solutions, we have proposed a modified
dispersion equation and its corresponding solving process. When solving the dispersion equation, the
Scholte wave velocity of VTI formation at high frequency is used as the initial guess. The two synthetic
examples including fast and slow VTI formations validate that these real-valued solutions do not
contribute to the wavefield, and the new dispersion curve extraction method is suitable for all kinds of
VTI formations. Consequently, the method can provide reliable dispersion curves for both theoretical
analysis and anisotropic parameters inversion in VTI formations.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Multipole acoustic well logging is widely used to reveal
important mechanical properties of the formation around the
borehole. Stoneley wave excited by a monopole source, flexural
wave excited by a dipole source and screw wave excited by a
quadrupole source are dispersive. These waveforms have been
widely used in obtaining elastic parameters in geophysical explo-
ration with the help of theoretical dispersion curves. For example,
theoretical dispersion curves are critical to perform vertical
compressional and vertical shear slowness inversion (e.g.,
Braunisch et al., 2004; Jiang et al., 2019), shear slowness profile
inversion (e.g., Sunaga et al., 2009; Ma et al., 2013), and Thomsen
anisotropy parameter inversion (e.g., Tang and Cheng, 2004; Xu
g), chaolee_cupb@sina.com

y Elsevier B.V. on behalf of KeAi Co
et al., 2017, 2018; Zeng, 2019). These real-valued dispersion
curves are non-radiatingmodes with no attenuation and contribute
to whole wavefield, such as the Stoneley mode without leaky
Stoneley mode included, flexural mode and screw mode without
leaky screwmode included (Sinha and Asvadurov, 2004). The above
methods are used under the assumption that the formation is
transversely isotropic and can be described by five elastic constants
(i.e., c11, c13, c33, c44, and c66), also known as the Thomsen (1986)
parameters (i.e. a, b, g, d, and ε). In this paper, the word “disper-
sion” is different from that used in porous rocks where the Biot
theory formulations and Gassman equation are widely used (e.g.,
Tang and Cheng, 2004; Müller et al., 2010; Zhao et al., 2015, 2020,
2021).

These dispersion curves of real-valued wave modes from the
conventional dispersion equation are solved by the Newton-
Raphson method (Tang and Cheng, 2004) or the Levenberg-
Marquardt method (Mor�e, 1978). Those methods are suitable for
isotropic formations and most vertically transverse isotropy (VTI)
formations with d< ε or d> εþ c44=ð2c33Þ, where Thomsen
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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anisotropy parameters d and ε are defined as ðc13þc44Þ2�ðc33�c44Þ2
2c33ðc33�c44Þ and

c11�c33
2c33

(Thomsen, 1986). However, when obtaining dispersion

curves, real-valued solutions existed for certain VTI formations
with ε � d< εþ c44=ð2c33Þ that do not represent any true wave
mode, not contribute to the wavefield. He and Hu (2010) have
proved that the wavefield is composed of the compressional wave
and shear wave branch points, and poles for this kind of VTI for-
mation. But they did not discuss on the influences of the real-
valued solutions on solving the dispersion curve. These real-
valued solutions might interfere with dispersion curve extraction
and should be removed. These solutions are named as pseudo
modes in this paper. Few studies have focused on the influence of
these real-valued solutions on total wavefield, dispersion curve
extraction and geophysical exploration. This paper can be regarded
as an extension of their work.

In this paper, we propose a new method that can obtain real-
valued dispersion curves of wave modes without the influence of
pseudo modes. This method includes a modified dispersion equa-
tion and its corresponding solving process which is suitable for all
VTI formations. We also use the synthetic examples to validate that
pseudo modes do not contribute to the total wavefield but affect
Thomsen anisotropy inversion. In addition, the method can be
extended to both wireline and logging while drilling (LWD)
acoustic logging when the instrument is taken into consideration.

2. Characteristics of theoretical dispersion curves

2.1. Pseudo modes of the dispersion equation

Multipole waves propagation in VTI formations in a fluid filled
borehole have been analyzed in previous studies (e.g., Zhang et al.,
1994; Tang and Cheng, 2004), and the coefficient of reflection Af is
based on the boundary conditions. The boundary conditions at the
borehole interface are expressed as8>><
>>:

u ¼ uf
srr ¼ srrf
srz ¼ 0
srq ¼ 0

; (1)

at r ¼ R, where R is the borehole radius, u and uf are radial
displacement in formation and borehole fluid, srr and srrf are the
radial stress in formation and borehole fluid, srz and srq are shear
stresses in the formation, respectively. The above boundary con-
ditions lead to a matrix equation for the unknown coefficients:

0
BB@

M11 M12 M13 M14
M21 M22 M23 M24
0 M32 M33 M34
0 M42 M43 M44

1
CCA
0
BB@

Af
Bn
Dn
Fn

1
CCA¼

0
BBBBBB@

udf

sdrrf
0
0

1
CCCCCCA
; (2)

where radial displacement udf and stress udrrf correspond to the

direct wavefield in borehole fluid, Bn, Dn and Fn are coefficients
associated with themodified Bessel function of the second kind at a
given azimuth order number n, respectively, and Mij are listed in
Appendix A. The coefficient of reflection Af in Eq. (2) is written as

Af ¼
N
�
k;u;n;R; r; rf ;af ; c11; c13; c33; c44; c66

�
D
�
k;u;n;R; r; rf ;af ; c11; c13; c33; c44; c66

�; (3)
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where N and D are the determinates of matrixes defined in
Appendix A, whose elements Mi2 and Mi4 are different from con-
ventional elements (Tang and Cheng, 2004) and other elements are
the same as conventional elements; k is the wavenumber in the
direction of wave propagation; u is the angular frequency; the
azimuthal order number n controls the azimuthal variation of the
wavefield with n ¼ 0; 1 and 2 corresponding to monopole, dipole
and quadrupole modes, respectively; r is the formation density; rf
and af are the borehole fluid density and velocity, respectively. The
vertical compressional velocity a and vertical shear velocity b are
defined as a ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

c33=r
p

; and b ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
c44=r

p
; respectively. The elements

Mi2 and Mi4 are different from ones in the conventional dispersion
equation (Tang and Cheng, 2004).
ðq2P �k2Þ=ðc44k2 �ðc11 �c13 �c44Þq2P �ru2Þ and

ðk2 �q2SV Þ=ððc13 þ2c44Þk2 �c11q2SV �ru2Þ are the common factors of
Mi2 and Mi4 in the conventional dispersion equation, respectively.
For the traditional dispersion equation, solutions satisfying
q2P � k2 ¼ 0 and q2SV � k2 ¼ 0 do not represent any wave motion
(Tang and Cheng, 2004). The influence of real-valued solutions
related to it can be avoided by solving Eq. (4),

D
�
k;u;n;R; r; rf ;af ; c11; c13; c33; c44; c66

�
¼ 0; (4)

Similarly, if qP ¼ qSV ; Mi4 will be equal to ikMi2, and the solu-
tions related to it will make the denominator of Af zero in some VTI
formation. Existed studies (He and Hu, 2009, 2010) have proved
that the solutions related to qP ¼ qSV ; are branch points not poles
for those VTI formations with d> εþ c33 =ð2c44Þ: Similar to the in-
fluence of the borehole fluid velocity on dispersion curve extraction
of flexural wave, if the solutions related to qP ¼ qSV ; are real-valued,
it might interfere the dispersion curve extraction. When solving Eq.
(4), the real-valued solutions related to qP ¼ qSV should be identi-
fied whether they affect dispersion extraction. It is obvious that it
requires

V2 � 4UW ¼ 0; (5)

which can be simplified as

aðu=kÞ4 þ bðu=kÞ2 þ c ¼ 0; (6)

where

a ¼ r2ðc11 � c44Þ2; b
¼ 2r

�
c13

2 þ 2c13c44 � c11c33
�
ðc44 þ c11Þ þ 4rðc44

þ c33Þc11c44; and c

¼
�
c213 þ 2c13c44 � c11c33

�2 � 4c11c33c
2
44:

The two solutions from Eq. (6) are

a1 ¼u

,
k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
� bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p ��
ð2aÞ

s
;

a2 ¼u

,
k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
� b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p ��
ð2aÞ

s
: (7)

If b2 � 4ac � 0 and �bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
>0;a1 will be real-valued; if

b2 � 4ac � 0 and � b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
>0, a2 will also be real-valued.

a1 and a2 are smaller than b if they are real-valued.
Existing studies (He and Hu, 2009, 2010) have proven that ±k1
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and ±k2 are branch points of a VTI formation with d> εþ c44=
ð2c33Þ; the imaginary-valued ±k2 does not affect real-valued
dispersion extraction; a1 is the asymptotic velocity of flexural
mode. The influence of solution a1 on dispersion extraction can be
effectively removed when computing the dispersion curves from
high frequency for this type of VTI formation. However, for VTI
formations with ε � d< εþ c44=ð2c33Þ where ε � d is deduced from
b2 � 4ac � 0, k1 or k2 does not make any contribution to the total
wavefield. It should be noted that k1 or k2 are not always complex,
which is different from He and Hu (2010). The rea-valued solutions
of qP ¼ qSV might affect dispersion extraction and the removal of
real-valued solutions of qP ¼ qSV helps to perform dispersion curve
extraction. The real-valued a1 and a2 are named as pseudo modes
in this paper.

2.2. The low-frequency asymptotes of all real-valued wave modes

The low-frequency asymptote of a real-valued wave mode can
be used to check whether the cut-off frequency exists. It's true that
the low-frequency asymptote of Stoneley wave mode exists. But for
the first order flexural wave mode, the findings of existing studies
are not consistent (e.g., Schmitt, 1988; Tang and Cheng, 2004;
Zhang et al., 2009; Xu et al., 2017).

Considering the asymptotic expansion for the modified Bessel
functions of the first and second kind (Zhang and Jin, 2011), when
u/0, Mij can be simplified as M0

ij expressed in Appendix B. The

determinant of
��Mij

�� can be

E0ðvÞ¼
��Mij

��; (8)

where, v ¼ u=k; is the phase velocity. Eq. (8) can be used to deter-
mine the low-frequency asymptotes of all real-valued wave modes.
For E0ðvÞ ¼ 0; there will be less than or equal to three real-valued
solutions in ð0; bÞ, including v0, a1 and a2. For azimuth order
number n ¼ 0; v0 is equal to the low-frequency asymptote of
Stoneley wave mode (White and Sengbush, 1953); for n ¼ 1; v0 is
equal to the low-frequency asymptote of the first order flexural
mode; for n>1; there is less than two real-valued solutions in ð0;
bÞ, including a1 and a2. The low-frequency asymptote v0 can be

determined by minimizing the following cost function:

E1ðvÞ¼

8>>>>>>>>><
>>>>>>>>>:

E0ðvÞ
.�

vra1
vra2

�
a1;a2 >0

E0ðvÞ
.�

vra1

�
a1 >0;a2 ¼ 0 or a22C

E0ðvÞ
.�

vra2

�
a2 >0;a1 ¼ 0 or a12C

E0ðvÞ a1ð2Þ ¼ 0 or a1ð2Þ2C

(9)

where vra1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=v2 � 1=a21

q
; vra2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=v2 � 1=a22

q
:

2.3. The high-frequency asymptote of all real-valued wave modes

The high-frequency asymptote of all real-valued wave modes
coincides with Scholte-wave velocity vSch (the speed of a surface
wave along a planar fluid-solid interface at high frequency). Many
studies (e.g., Braunisch et al., 2004; Vinh, 2013; Fang and Cheng,
2018) have focused on the isotropic formation. The Scholte-wave
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velocity can be used in borehole fluid velocity inversion (Valero
et al., 2009) and formation shear velocity inversion (Zhang et al.,
2019).

Considering the asymptotic expansion for the modified Bessel

functions of the first and second kind (Zhang and Jin, 2011), KnðzÞ �ffiffiffiffi
p
2z

q
e�z; and InðzÞ � ezffiffiffiffiffiffiffi

2pz
p ; which is valid for large jzj: When u/∞,

Mij after removing common factors can be simplified asM∞
ij ;whose

elements with non-zero values are

M∞
11 ¼ � vrf

M∞
12 ¼ � iðc13 þ c44ÞvrP

	
v

M∞
14 ¼ � iðc13 þ c44ÞvrSV

	
v

M∞
21 ¼ rf

M∞
22 ¼ i

h
c11c44



vrP
�2 þ c13

�
c44

.
v2 � r

�i.
v

M∞
24 ¼ i

h
c11c44



vrSV

�2 þ c13
�
c44

.
v2 � r

�i.
v

M∞
33 ¼ r� c44

.
v2

M∞
42 ¼ c44

h
c13

.
v2 þ c11



vrP
�2 þ r

i
vrP

M∞
44 ¼ c44

h
c13

.
v2 þ c11



vrSV

�2 þ r
i
vrSV (10)

where, v is the phase velocity,

vrf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
.
v2 � 1

.
a2f

r
; vrP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
� V∞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
∞ � 4UW∞

q ��
ð2UÞ

s
;

vrSV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
� V∞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
∞ � 4UW∞

q ��
ð2UÞ

s

V∞ ¼ rðc11 þ c44Þ þ
�
c213 þ 2c13c44 � c11c33

�.
v2; W∞

¼
�
r� c44

.
v2
��

r� c33
.
v2
�
:

So, the determinant of
��Mij

�� can be

��Mij
��¼M∞

33

��������
M∞

11 M∞
12 M∞

14

M∞
21 M∞

22 M∞
24

0 M∞
42 M∞

44

��������
¼ M∞

33F0ðvÞ (11)

with F0ðvÞ ¼ M∞
11ðM∞

22M
∞
44 � M∞

24M
∞
42Þþ M∞

21ðM∞
42M

∞
14 � M∞

12M
∞
44Þ.

Eq. (11) is independent of , R, u and c66. For F0ðvÞ ¼ 0; there are
less than or equal to four real-valued solutions in ð0; bÞ, including
vSch, b, a1 and a2. The Scholte-wave velocity is dependent on c11,
c33, c13, c44, r, rf and af , but not dependent on c66, which has not
been reported in previous studies (e.g., Braunisch et al., 2004).
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However, there is no common extract root formula for five and
above power equations (Shmakov, 2011). Therefore, the Scholte-
wave velocity will be determined by minimizing the following
cost function:

F1ðvÞ¼

8>>>>>>>>><
>>>>>>>>>:

F0ðvÞ
.�

vrSv
r
a1
vra2

�
a1;a2 >0

F0ðvÞ
.�

vrSv
r
a1

�
a1 >0;a2 ¼ 0 or a22C

F0ðvÞ
.�

vrSv
r
a2

�
a2 >0;a1 ¼ 0 or a12C

F0ðvÞ
	
vrS a1ð2Þ ¼ 0 or a1ð2Þ2C

(12)

where vrS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c44=v2 � r

p
: Eq. (12) can remove the influence of b, a1

and a2. The Scholte-wave velocity can be found in ð0; bÞ for slow
formation or

�
0; af

�
for fast formation by the brute force grid

search (Press et al., 2007) or a global minimization algorithm, such
as the very fast simulated annealing algorithm (Ingber, 1989). The
Scholte-wave velocity can be used as the initial guess when
computing dispersion curves starting from high frequencies in a
Fig. 1. Bandera sandstone. Solutions of E0ðvÞ ¼ 0 and E1ðvÞ ¼ 0 at 0.01 Hz for monopole (a),
∞:

Table 1
Parameters for a water-filled borehole in two VTI formations. The real-valued solutions o

r, kg/m3 a, m/s b, m/s

Bandera sandstone 2160 3810 2368
Pierre shale 950 2250 2202 969
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short velocity band with Scholte-wave velocity included by the
Newton-Raphson method (Tang and Cheng, 2004) or the
Levenberg-Marquardt method (Mor�e, 1978). The solution at the
given frequency would be close to the Scholte-wave velocity.
Generally, the velocity for the Stoneley wave mode at high fre-
quency is smaller than Scholte-wave velocity; the velocities for the
flexural wave mode and screw wave mode at high frequency is
larger than Scholte-wave velocity.
2.4. Theoretical dispersion extraction of real-valued wave modes

For the real-valued wave modes, the dispersion curve can be
computed by the Newton-Raphsonmethod (Tang and Cheng, 2004)
or the Levenberg-Marquardt method (Mor�e, 1978) from the
following equation:

D1ðv;uÞ¼ 0; (13)

with
for dipole (b) and for quadrupole (c); (d) solutions of F0ðvÞ ¼ 0 and F1ðvÞ ¼ 0 when u/

f pseudo modes and Scholte wave velocity are also included.

ε g d vSch , m/s a1, m/s

0.03 0.03 0.045 1465.71 1815.91
0.015 0.03 0.06 828.55 927.21



Fig. 2. Pierre shale 950. Solutions of E0ðvÞ ¼ 0 and E1ðvÞ ¼ 0 at 0.01 Hz for monopole (a), for dipole (b) and for quadrupole (c); (d) solutions of F0ðvÞ ¼ 0 and F1ðvÞ ¼ 0 when u/ ∞:

D1ðv;uÞ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

D0ðv;uÞ
.��

vrf

�n
vra1

vra2

�
a1;a2 >0

D0ðv;uÞ
.��

vrf

�n
vra1

�
a1 >0;a2 ¼ 0 or a22C

D0ðv;uÞ
.��

vrf

�n
vra2

�
a2 >0;a1 ¼ 0 or a12C

D0ðv;uÞ
.�

vrf

�n
a1ð2Þ ¼ 0 or a1ð2Þ2C

; if d � εþ c44

,
ð2c33Þ;
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D1ðv;uÞ¼D0ðv;uÞ
.�

vrf

�n
; if d> εþ c44

.
ð2c33Þ

and D0ðv;uÞ ¼ Dðk;u;n;R;r;rf ;af ;c11;c13;c33;c44;c66Þ:
Considering the asymptotic expansion for the modified Bessel

functions of the first kind InðzÞ with small z in Mi1 (Zhang and Jin,
2011), the influence of borehole fluid velocity can be removed for
n>0. Eq. (13) can remove all real-valued pseudo modes of all VTI
formations.

The detailed numerical algorithm consists of the following
steps. The first step is to obtain Scholte-wave velocity by Eq. (12)
with the help of the brute force grid search (Press et al., 2007) or
a global minimization algorithm, such as the very fast simulated
annealing algorithm (Ingber, 1989). The second step is to obtain the
velocity of a given mode at high frequency with the Scholte-wave
velocity used as the initial guess in a short velocity band with
Scholte-wave velocity included by the Newton-Raphson method
2653
(Tang and Cheng, 2004) or the Levenberg-Marquardt method
(Mor�e, 1978). The third step is to use the previous solution at high
frequency as an initial guess at the next frequency. The fourth step
is to repeat the third step for all frequencies until all roots are found
from high frequency to low frequency.

3. Examples

In this section, Bandera sandstone and Pierre shale 950
(Thomsen,1986) in Table 1 are used to demonstrate the influence of
pseudo modes on dispersion curves of real-valued wave modes,
waveforms, and Thomsen anisotropy parameters inversion of a VTI
formation. The Bandera sandstone is a fast formation whose ver-
tical shear velocity is larger than compressional velocity of borehole
fluid; and Pierre shale 950 is a slow formation whose vertical shear
velocity is smaller than compressional velocity of borehole fluid.
The density rf and compressional velocity af of borehole fluid are
1000 kg/m3 and 1500 m/s, respectively. The borehole radius is



Fig. 3. Bandera sandstone. Objective residuals of D0ðv; uÞ for monopole mode (a), dipole mode (c), quadrupole mode (e) and D1ðv; uÞ for monopole mode (b), dipole mode (d),
quadrupole mode (f).
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0.1016 m. The Scholte-wave velocity in Table 1 from Eq. (12) is less
than af . The synthetic waveforms of monopole, dipole and quad-
rupole are computed by real axis integration (RAI) method (Tsang
and Radar, 1979). The source SðtÞ with a pulse width Tw (0.5 ms)
and a variable center frequency f0 is used as follows:

SðtÞ¼

8><
>:
1
2

�
1þcos

2p
Tw

�
t�Tw

2

�

cos2pf0

�
t�Tw

2

�
; 0� t� Tw

0; t>Tw
(14)

For the fast formation, f0 for monopole, dipole and quadrupole
sources are 6.0 kHz, 3.0 kHz and 6.0 kHz, respectively; for the slow
2654
formation, f0 for monopole, dipole and quadrupole sources are
6.0 kHz. The source-to-receiver axial distances are from 2.0 to 4.0 m
with an equal interval of 0.1 m.
3.1. Theoretical dispersion curves

In acoustic logging, the dispersion curves of real-valued wave
modes are widely used in geophysical exploration. Figs. 1e2 show
the low-frequency and high-frequency asymptotes of real-valued
wave modes for Bandera sandstone and Pierre shale 950, respec-
tively. The Stoneley wave velocity at 0.01 Hz of E1ðvÞ ¼ 0 and
E0ðvÞ ¼ 0 coincides with its low-frequency asymptote v0Stoneley. The



Fig. 4. Pierre shale 950. Objective residuals of D0ðv; uÞ for monopole mode (a), dipole mode (c), quadrupole mode (e) and D1ðv; uÞ for monopole mode (b), dipole mode (d),
quadrupole mode (f).
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solutions of shear velocity b in E1ðvÞ ¼ 0 and E0ðvÞ ¼ 0 indicate that
the cut-off frequency of the flexural wave mode does not exist,
which coincides with existing studies. Figs. 1(c) and 2(c) show that
the cut-off frequency of the screw wave mode exists. Figs. 1(d) and
2(d) show the Scholte-wave velocity vSch can be obtained by solving
F0ðvÞ ¼ 0 and F1ðvÞ ¼ 0, and vSch is the only solution of F1ðvÞ ¼ 0 in
ð0; bÞ. Figs. 1e2 show that pseudo mode a1 exists in the whole
frequency domain, but the influence of a1 can be successfully
removed if Eqs. (9) and (12) is used.

The roots ofD1ðvÞ ¼ 0 andD0ðvÞ ¼ 0 are located in theminima of
the error surface. For the Bandera sandstone and Pierre shale 950,
a1 and a2 are real-valued and complex, respectively. Figs. 3e4 both
show that dispersion curves of real-valued wave modes (white dot
lines) are wrong if Eq. (4) is used but they can be correctly obtained
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by solving Eq. (13) which can remove the influence of pseudo mode
and borehole fluid wave mode. For example, the wrong dispersion
curve of flexural wave in Fig. 3(c) is explained as follows. Firstly,
interference of a1 exists in whole frequency domain; secondly, the
dispersion curve is obtained by using the previous solution at a
higher frequency as the initial guess; and finally, it's hard to identify
which solution is correct for the flexural wavemode. The dispersion
curve can be obtained by solving Eq. (13) in Fig. 3(d) if the first
solution at 10.0 kHz is correct for the flexural wave mode without
the interference of pseudo modes.
3.2. Synthetic waveforms

As described previous section, the pseudo modes do not



Fig. 5. Bandera sandstone. (a) Synthetic waveforms, (b) STC result and (c) FBAPES result for monopole case; (d)e(f) for dipole case; (g)e(i) for quadrupole case.
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contribute to the total wavefield. It can also be validated by pro-
cessing the synthetic waveforms in time and frequency domain, i.e.,
the slowness-time coherence (STC) (Kimball, 1986) result and
dispersion analysis by the forward and backward amplitude and
phase estimation (FBAPES) (Li et al., 2015) method which can
identify all wave modes. For Bandera sandstone, Fig. 5(a) and (d)
and 5(g) show the synthetic monopole, dipole and quadrupole
waveforms, respectively. The compressional wave mode, pseudo-
Rayleigh wave mode and Stoneley wave mode in Fig. 5(b) and (c)
can be found. Fig. 5(e) show that the flexural wave is dispersive,
which is validated by the dispersion analysis result of the flexural
wave mode and its higher-order mode in Fig. 5(f). Unlike the
monopole case, there is a leaky mode in Fig. 5(i) except the real-
valued screw mode and its higher-order mode. It's obvious that
the pseudo mode does not appear in Fig. 5(b)-5(c), 5(e)-5(f) and
5(h)-5(i), which also proves that k1 is a removable branch point and
does not contribute to the total wavefield. For Pierre shale 950,
Fig. 6 shows the synthetic monopole, dipole and quadrupole
waveforms and results processed by STC and dispersion analysis,
which also proves that k1 does not contribute to the total wavefield.
Different from Bandera sandstone, results by STC and dispersion
analysis show that the borehole fluid signal appears in synthetic
waveforms; the borehole fluid signal should not appear. The
appearance of the borehole fluid signal is from the RAI method
2656
using sum of direct wavefield and reflected wavefield which does
not remove the influence of borehole fluid exactly.

3.3. Influence on thomsen anisotropic parameters inversion

Thomsen anisotropic parameters are very important and can be
obtained by processing dispersion data. The Thomsen anisotropy
parameters is obtained by

Objðd;gÞ ¼ log 10

ð
U

jvmðu; d;gÞ � vdðuÞj2du; (15)

where vm and vd denote the calculated velocity dispersion curve
and the processed dipole dispersion data, respectively. For Bandera
sandstone, g ¼ ε is used in Eq. (15); for Pierre shale 950, ε is
assumed to be known. Both are used to investigate the influence of
pseudo modes on Thomsen anisotropic parameters inversion. The
processing frequency band U is selected as
½ðfAiry �1Þ kHz; ðfAiry þ1Þ kHz�where fAiry is the Airy frequency. For
Bandera sandstone, fAiry is 4.6 kHz; for Pierre shale 950, fAiry is
2.4 kHz. Obviously, Eq. (15) is dependent on the accuracy of vm. As
described previous section, it's possible to encounter the interfer-
ence of the pseudo modes when Eq. (4) is used. For the VTI for-
mations in Table 1, area (1) holding d> εþ c44=ð2c33Þ in Figs. 7(a)



Fig. 6. Pierre shale 950. (a) Synthetic waveforms, (b) STC result and (c) FBAPES result for monopole case; (d)e(f) for dipole case; (g)e(i) for quadrupole case.
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and 8(a) show that it’s impossible to find the true solution in this
area but in areas (2) and (3) holding d< εþ c44=ð2c33Þ can be used
as searching area of Eq. (15). There will be pseudo modes inter-
ference due to real-valued solutions related to qP ¼ qSV in area (2),
and no pseudo modes interference in area (3). The red points in
Fig. 7(a)-7(c), 7(e), 8(a)-8(c) and 8(e) are the true solution of Objðd;
gÞ ¼ 0. Fig. 7(c), (e), 8(c) and 8(e) show that it’s necessary to

calculate the dispersion curves by Eq. (13) not Eq. (4). Obviously, the
solution of Objðd; gÞ ¼ 0 with dispersion curves determined by Eq.
(4) will be found in area (1) not area (2) of Figs. 7(e) and 8(e). The
main reason is that some dispersion curves with frequency less
than the red line in Figs. 7(f) and 8(f) are not correctly obtained.
4. Discussion

The rock samples collected by Thomsen (1986) can be divided
into two parts by the relation between d and εþ c44= ð2c33Þ. For VTI
formations with d> εþ c44=ð2c33Þ, the solution a2 is an imaginary
value. The dispersion curves can be obtained correctly by solving
Eq. (13) from high frequency. The influence of a1 can be avoided.
For those VTI formations with d � εþ c44=ð2c33Þ, there are 14 rock
samples with a1 real-valued and a2 complex. The dispersion curves
of real-valued wave modes for the remaining rock samples can be
obtained by traditional methods because a1 and a2 are complex. a1
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and a2 are also complex for other published rock samples (e.g.,
Table 1 of Wang, 2002; Tang and Cheng, 2004; Sunaga et al., 2009;
Li et al., 2013).

The Thomsen anisotropy parameters of 237 rock samples with
c66 measured by Wang (2002) all satisfy d � εþ c44=ð2c33Þ. There
are 72 rock samples with a1 real-valued and a2 complex, 2 rock
samples with a1 and a2 real-valued. The rock samples collected by
Thomsen (1986) and Wang (2002) both demonstrated that it is
possible to encounter this type of formation and those pseudo
modes should be avoided when performing dispersion extraction.

In geophysical exploration, isotropic formation and VTI forma-
tion satisfying the ANNIE approximation (i.e., c13 ¼ c33 � 2c44,
c11 ¼ c33 þ 2ðc66 � c44Þ) (Schoenberg et al., 1996) and Thomsen
anisotropy parameter g ¼ c66�c44

2c44
>0 are commonly encountered.

For isotropic formations, a1 and a2 are zeros. For VTI formations
satisfying the ANNIE approximation and Thomsen anisotropy
parameter g>0 (e.g., Tang and Cheng, 2004; Xu et al., 2017, 2018),
a1 and a2 are complex due to b2 � 4ac ¼ 32c44ðc44 � c66Þðc33 þ
2ðc66 � c44ÞÞðc33 � c44Þ3 <0. The dispersion curve of real-valued
wave modes can be obtained by traditional methods without the
influence of pseudo modes.

From the boundary conditions at the fluidesolid interface, the
related elements of the dispersion matrix in the wireline tool case
(Tang and Cheng, 2004) and the LWD tool case (e.g., Briggs, 2006;



Fig. 7. Bandera sandstone. Distribution of pseudo modes when (a) d and g are set as [-0.2, 0.5], [-0.1, 0.5], respectively; (b) d and g are set as [0, 0.1], [0, 0.09], respectively; (c) error
surfaces of Objðd; gÞ with dispersion curves determined by Eq. (13); (d) dispersion curves determined by Eq. (13) with g changed from 0 to 0.09 and other Thomsen parameters
held; (e) error surfaces of Objðd; gÞ with dispersion curves determined by Eq. (4) with g changed from 0 to 0.09 and other Thomsen parameters held; (f) dispersion curves
determined by Eq. (4).
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Zheng, 2012; Li et al., 2013; Wang and Qiao, 2015) are equal to the
elements in the conventional dispersion matrix (Tang and Cheng,
2004). Therefore, the method of removing real-valued a1 and a2
is also suitable for the dispersion equations in the above two cases.
For the LWD tool case, the influence of borehole fluid velocity can
also be removed by the same method used in Eq. (13). And the
shear velocity of drill collar can also be removed by the similar
method considering the asymptotic expansion for the modified
Bessel functions of the first kind InðzÞwith small z. Because they are
derived from the elements in the same column of dispersion
matrix.
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5. Conclusion

We have proposed a modified dispersion equation in which the
influence of pseudo modes and borehole fluid velocity can be
removed successfully. For VTI formations with d � εþ c44=ð2c33Þ,
pseudo modes a1 or a2 derived from qP ¼ qSV might interfere with
dispersion extraction and Thomsen anisotropic parameters inver-
sion. Therefore, these real-valued a1 and a2 in some VTI formations
with d � εþ c44=ð2c33Þ must be removed when performing
dispersion extraction. The influence of a1 for VTI formation with
d> εþ c44=ð2c33Þ can also be avoided. The dispersion curves for all
VTI formation can be obtained accurately by solving the modified
dispersion equation when starting from high frequency with the



Fig. 8. Pierre shale 950. Distribution of pseudo modes when (a) d and g are set as [-0.2, 0.5], [-0.1, 0.5], respectively; (b) d and g are set as [0, 0.1], [0, 0.09], respectively; (c) error
surfaces of Objðd; gÞ with dispersion curves determined by Eq. (13); (d) dispersion curves determined by Eq. (13) with g changed from 0 to 0.09 and other Thomsen parameters
held; (e) error surfaces of Objðd; gÞ with dispersion curves determined by Eq. (4) with g changed from 0 to 0.09 and other Thomsen parameters held; (f) dispersion curves
determined by Eq. (4).
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Scholte wave velocity of VTI formations as an initial guess. In
addition, the Scholtewave velocity is dependent on c11, c13, c33, c44,
r, rf and af , but not dependent on c66. Both theoretical analysis and
anisotropic parameters inversion in a VTI formation could benefit
from more reliable dispersion curves than conventional dispersion
equation.
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Appendix A. Elements in Af

The determinants N and D in reflection coefficient Af in Eq. (1)
are expressed as
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N¼

0
BB@

b1 M12 M13 M14
b2 M22 M23 M24
0 M32 M33 M34
0 M42 M43 M44

1
CCA and D

¼

0
BB@

M11 M12 M13 M14
M21 M22 M23 M24
0 M32 M33 M34
0 M42 M43 M44

1
CCA

where,

b1 ¼ εn

hn
R
KnðfRÞ� fKnþ1ðfRÞ

i

b2 ¼ � εnrfu
2KnðfRÞ

M11 ¼ � n
R
InðfRÞ � fInþ1ðfRÞ

M12 ¼ � ðc13 þ c44Þ
h
� n
R
KnðqPRÞþ qPKnþ1ðqPRÞ

i

M13 ¼
n
R
KnðqSHRÞ

M14 ¼ � ikðc13 þ c44Þ
h
� n
R
KnðqSVRÞþ qSVKnþ1ðqSVRÞ

i

M21 ¼ rfu
2InðfRÞ

M22 ¼
h
c11c44q

2
P þ c13

�
c44k

2 � ru2
�i

KnðqPRÞ

þ 2c66ðc13 þ c44Þ
R

�
nðn� 1Þ

R
KnðqPRÞþ qPKnþ1ðqPRÞ




M23 ¼
2nc66
R

�
nðn� 1Þ

R
KnðqSHRÞ� qSHKnþ1ðqSHRÞ




M24 ¼ ik
�h

c11c44q
2
SV þ c13

�
c44k

2 � ru2
�i

KnðqSVRÞ

þ2c66ðc13 þ c44Þ
R

�
nðn� 1Þ

R
KnðqSVRÞþ qSVKnþ1ðqSVRÞ


�

M31 ¼0

M32 ¼
2nc66
R

ðc13 þ c44Þ
�
1� n
R

KnðqPRÞþ qPKnþ1ðqPRÞ



M33 ¼ � c66

��
2nðn� 1Þ

R2
þ q2SH



KnðqSHRÞþ

2qSH
R

Knþ1ðqSHRÞ
�

M34 ¼
2nc66
R

ikðc13 þ c44Þ
�
1� n
R

KnðqSVRÞþ qSVKnþ1ðqSVRÞ



M41 ¼0

M42 ¼
c44
ik

�
c13k

2 þ c11q
2
P þ ru2

�h
� n
R
KnðqPRÞþ qPKnþ1ðqPRÞ

i
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M43 ¼
iknc44

R
KnðqSHRÞ

M44 ¼ c44
�
c13k

2 þ c11q
2
SV þ ru2

�h
� n
R
KnðqSVRÞþ qSVKnþ1ðqSVRÞ

i
εn is the Neumann coefficient, In and Kn is the modified Bessel

function of the first and second kind, respectively. The radial
wavenumbers for the borehole fluid and the formation quasi-P,
quasi-S and horizontally polarized shear (SH) waves are given by

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðu=af Þ2

q
, qP ¼ u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�V þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 � 4UW

p
Þ=ð2UÞ

q
,

qSV ¼ u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�V �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 � 4UW

p
Þ=ð2UÞ

q
and qSH ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðc44k2 � ru2Þ=c66
p

, where the symbols U, V and W are given by

U¼ c11c44;

V ¼ rðc11 þ c44Þ þ
�
c213 þ2c13c44 � c11c33

��
k2

.
u2

�
;

W ¼
�
r� c44k

2
.
u2

��
r� c33k

2
.
u2

�
:

Appendix B. Elements M0
ij

Considering the asymptotic expansion for the modified Bessel
functions of the first and second kind (Zhang and Jin, 2011), when
u/0, Mij after removing common factors can be simplified as M0

ij .

For n ¼ 0, M0
ij is expressed as

M0
11 ¼ � f 2;

M0
12 ¼ � ikðc13 þ c44Þ;

M0
14 ¼ � ikðc13 þ c44Þ;

M0
21 ¼2rfu

2;

M0
22 ¼ ik

n
2c66ðc13 þ c44Þ�R2

h
c11c44q

2
P � c13

�
ru2 � c44k

2
�

�
i
lnðqPRÞ

o
;

M0
24 ¼ ik

n
2c66ðc13 þ c44Þ�R2

h
c11c44q

2
SV � c13

�
ru2 � c44k

2
�

�
i
lnðqSVRÞ

o
;

M0
33 ¼ c66

h
R2q2SH lnðqSHRÞ�2

i
;

M0
42 ¼ c13k

2 þ c11q
2
P þ ru2;

M0
44 ¼ c13k

2 þ c11q
2
SV þ ru2;

M0
13 ¼M0

23 ¼ M0
31 ¼ M0

32 ¼ M0
34 ¼ M0

41 ¼ M0
43 ¼ 0:

For n>0, M0
ij is expressed as
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#
;
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where GðnÞ is the gamma function (Zhang and Jin, 2011).
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