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a b s t r a c t

Well production optimization is a complex and time-consuming task in the oilfield development. The
combination of reservoir numerical simulator with optimization algorithms is usually used to optimize
well production. This method spends most of computing time in objective function evaluation by
reservoir numerical simulator which limits its optimization efficiency. To improve optimization effi-
ciency, a well production optimization method using streamline features-based objective function and
Bayesian adaptive direct search optimization (BADS) algorithm is established. This new objective func-
tion, which represents the water flooding potential, is extracted from streamline features. It only needs to
call the streamline simulator to run one time step, instead of calling the simulator to calculate the target
value at the end of development, which greatly reduces the running time of the simulator. Then the well
production optimization model is established and solved by the BADS algorithm. The feasibility of the
new objective function and the efficiency of this optimization method are verified by three examples.
Results demonstrate that the new objective function is positively correlated with the cumulative oil
production. And the BADS algorithm is superior to other common algorithms in convergence speed,
solution stability and optimization accuracy. Besides, this method can significantly accelerate the speed
of well production optimization process compared with the objective function calculated by other
conventional methods. It can provide a more effective basis for determining the optimal well production
for actual oilfield development.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Well production optimization is indispensable in oil field
development since proper reservoir production will contribute to
high sweep efficiency and oil recovery factor (Tavallali et al., 2013;
Wang, 2016; Chen et al., 2017).

At present, the selection method and optimization method are
the main methods to designwell production. The selection method
is to design a limited number of injection-production system
schemes artificially based on the experience of reservoir engineers.
Through the comparison of the development effects of multiple
schemes, the scheme with the best effect is determined. The
method is simple and easy to implement, but it is difficult to obtain
y Elsevier B.V. on behalf of KeAi Co
the optimal scheme (Wang, 2016). With the development of
intelligent optimization, the combination of reservoir numerical
simulators with optimization algorithms has increasingly become a
research direction (Tavallali et al., 2013; Isebor et al., 2014; Oliveira
and Reynolds, 2014; Wang, 2016; Zhang et al., 2020). The method
makes full use of the optimization algorithm principle to continu-
ously update the well production and eliminate the artificial fac-
tors. The optimization objective function generally selects the
development effect indicators such as cumulative oil production
(COP), economic net present value (NPV), and oil recovery (Fonseca
et al., 2015; Wang et al. 2016, 2019). This method has the advantage
of automatic optimization solution. However, it needs to call the
reservoir simulators to run hundreds of times. Besides, the size of
the optimization problem and the internal control of the algorithm
also determines the number of iterations (Wang et al., 2015). Yeten
believes that in one optimization solution, the running time of
reservoir numerical simulator accounts for 99% of the total
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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optimization time (Yeten, 2003). Due to the complex nonlinear
relationship between injection-production system and develop-
ment effect, reservoir heterogeneity, fluid properties, and other
factors affect the optimal well production (Feng et al. 2013, 2014;
Wang et al., 2016), so the well production optimization problem is a
complex mathematical problem (Bellout et al., 2012; Wang et al.,
2019). In addition, the uncertainty in the optimization process
might become more time-consuming (Arouri and Sayyafzadeh,
2020; Mahjour et al., 2022). Therefore, two approaches are
commonly used to speed up the optimization process and shorten
the solution time. One of the approaches is to improve the opti-
mization algorithm efficiency. Meanwhile, the evaluation of the
objective function can be sped up to solve the problem.

Reservoir engineering methods, streamline-based simulation,
and proxy model are usually applied to reduce the objective func-
tion evaluation time. Reservoir engineering methods mainly
include injection-production splitting method and equivalent
seepage resistance method (El-Khatib, 1997; Feng et al., 2013;
Wang, 2016; Mollaei and Delshad, 2019). These methods can
quickly predict the reservoir development index, but the specific
calculation process is complicated, and the derivation for complex
reservoirs is difficult, so the application scope is limited. The
streamline simulation method (Al-Najem et al., 2012) is solved by
the implicit pressure explicit saturation (IMPES) method (Osako
et al., 2009; Gladkov et al., 2013). The computing time is shorter
than traditional numerical simulators (Siavashi et al., 2016).
Therefore, the streamline-based simulator can be used to speed up
the optimization process when calculating the objective function.
Thiele and Batycky used streamline simulation to optimize the
allocation scheme of injection-production fluid and realized the
flow field andwell patternmatching (Thiele and Batycky, 2003). Liu
established the method of effect evaluation and formed the
injection-production optimization method by using differential
evolution (DE) algorithm (Liu, 2018). The proxy model method is
also a common method to improve the optimization efficiency
(Caers, 2003; He et al., 2016; Wang et al., 2022). This method trains
the reservoir production index data set through a certain number of
numerical simulations sampling, and then constructs a surrogate
prediction model similar to the original numerical simulations
(Zhang et al., 2020). The proxy model can be used to predict the
development effect index, which greatly reduces the operation
times of calling the reservoir numerical simulator (Zhou et al.,
2007; Onwunalu et al., 2008; Knudsen and Foss, 2015). Many
scholars (Wang et al., 2019;Wu et al., 2020; Zhang et al., 2020) used
the artificial neural network to construct a proxy model and toke
the cumulative oil production or NPV as the objective function. The
high computational costs of well production optimization process
and reservoir simulations hinder the optimization efficiency
despite the fact that these methods can reduce the number of
reservoir simulations and speed up the well production optimiza-
tion process to some extent.

Another way to improve the well production optimization effi-
ciency is to apply or construct an efficient optimization algorithm.
The algorithm can be divided into derivate algorithm and derivate-
free algorithm according to whether the gradient information is
needed. The efficiency of finite-difference method (Sarma et al.,
2005; Li et al., 2013) is greatly affected by the number of reser-
voirmodel grids. The adjoint gradient method has high efficiency in
solving this problem, but needs nested reservoir numerical simu-
lator to obtain the derivatives (Yan et al., 2013), which makes the
solution process more complicated. However, the derivate-free
optimization algorithm does not need to provide the gradient in-
formation of the objective function, and can be directly solved ac-
cording to the optimization mechanism within the algorithm. The
common derivate-free optimization algorithms include DE
2880
(Awotunde, 2014), genetic algorithm (GA) (Ambia, 2012), particle
swarm optimization (PSO) algorithm (Perez and Behdinan, 2007)
and simulated annealing (SA) algorithm (Beckner and Song, 1995).
Isebor et al. combined PSO and pattern search to optimize well
placement and well production (Isebor et al., 2014). Jinn-Tsong Tsai
et al. proposed that dominant individuals generate a newmutation
strategy according to the trend of orthogonal vectors, which in-
creases the search ability of the DE algorithm (Tsai, 2015). In
addition, some new and efficient optimization algorithms, such as
artificial bee colony (ABC) algorithm (Zhang, 2018), covariance
matrix adaptation evolution strategy (CMA-ES) (Wang et al., 2019),
simultaneous perturbation stochastic approximation (SPSA)
(Pouladi et al., 2020; Salehian et al., 2021), are also applied to solve
well production optimization problems. Compared with derivate
algorithms, this type of algorithm has a simple optimization pro-
cess. But the derivate-free algorithm is easy to cause the optimi-
zation process to fall into a local optimum. On the efficiency of
solving all optimization problems, only one basic algorithm cannot
be implemented (AlQahtani et al., 2012; Nwankwor et al., 2013;
Isebor et al., 2014; Semnani et al., 2022). Therefore, researchers
usually couple the optimization mechanisms of two or more opti-
mization algorithms to improve the well production optimization
efficiency. One way is to combine derivate algorithm (such as
conjugate gradient) (Sampaio et al., 2015) with derivative-free al-
gorithm, which has good performance in finding global and local
optimal solutions. In order to improve the ability of generating the
optimal solutions, another method combines two derivative-free
algorithms and can effectively maintain the diversity of popula-
tion (Nwankwor et al., 2013; Nasir et al., 2020). Bayesian adaptive
direct search optimization (BADS) is a recently developed global-
local random search algorithm (Gramacy and Le Digabel, 2015;
Acerbi andMa, 2017). BADS has the advantages of fast convergence,
high flexibility and good consistency. However, to the best of our
knowledge, the BADS algorithm has not been used to deal with well
production problems. Therefore, BADS is applied towell production
optimization in this paper.

For large-scale reservoirs, the running time of a single numerical
simulation can take minutes to hours or even days, which cannot
meet the requirements of field applications. Therefore, in order to
improve the well production optimization efficiency, we propose a
well production optimization method using streamline feature-
based objective function and BADS algorithm. This new objective
function, which represents the water flooding potential, is extrac-
ted from streamline features. The objective function only needs to
call the streamline simulator to run one time step, instead of calling
the simulator to calculate the target value at the end of develop-
ment, which greatly reduces the running time of the simulator.
Then the well production optimization model is established and
solved by BADS algorithm. The feasibility of the new objective
function and the efficiency of the optimization method are verified
by three examples. Example I validates the feasibility of the new
objective function through the relationship between the new
objective function and the cumulative oil production. The conver-
gence speed and search accuracy of BADS and other four algorithms
are compared and analyzed in example II. In example III, two
conventional optimization methods and the method established in
this paper are applied to optimize well production in the egg
model.

This paper is organized as follows. In Section 2, the streamline
feature-based objective function for well production optimization
problem is presented. In Section 3, the BADS optimization algo-
rithm is introduced. In Section 4, the feasibility of the new objective
function and the efficiency of the optimization method are verified
by three examples. In Section 5, conclusions of this research and
prospects for future work are discussed.



Fig. 1. Streamline computed by Frontsim simulator.
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2. Streamline feature-based objective function

2.1. Instantaneous flow field potential coefficient (IFPC)

The flow field distribution is directly related to the development
effect. The adjustment of well production will result in the redis-
tribution of flow field, which affects the development performance.
Therefore, by extracting streamline attribute information, an index
representing water flooding ability along streamlines can be con-
structed to quantitatively reflect the development effect.

Therefore, the instantaneous flow field potential coefficient
(IFPC) considering streamline characteristics is established. IFPC
has two advantages. The IFPC index comprehensively considers the
influence of movable oil saturation and fluid velocity along
streamlines. That is, the larger the index, the greater the influence
of flow field on the whole movable oil region, indicating that the
better the water flooding effect in the future. Besides, it is only
necessary to call the streamline simulator to simulate the instan-
taneous development of the adjusted field, and not necessary to
simulate each iteration until the end of development to calculate
the objective function, which can significantly reduce the optimi-
zation time. In Section 2.2 and 2.3, we construct the IFPC and
establish the streamline feature-based objective function for well
production optimization problem. And we justify the superiority
and feasibility of the new objective function in Section 4.1.

2.2. Construction of IFPC

2.2.1. Principle of streamline numerical simulation
Streamline numerical simulation technology is the process of

converting a 3-D model into a 1-D streamline model. The basic
principle is as follows. First, the simulator is performed grid divi-
sion and assign initial values, such as porosity, permeability, satu-
ration, pressure, phase permeability, and well information. Based
on this, the IMPES method (Siavashi et al., 2012; Ahmadpour et al.,
2016) is used to calculate the pressure field and velocity fields.
Then, the streamline field is generated by using Pollock streamline
tracing (Pollock, 1988), and the parameter, namely saturation, is
obtained along the streamline. Use the obtained saturation distri-
bution along the streamlines to map back to the base grid system.
Thereby, the saturation distribution on the grid is calculated.

Since the fluid flow in the streamline simulation is one-
dimensional migration along the streamline according to the direc-
tion of the pressure gradient (Al-Najem et al., 2012), rather than
three-dimensional movement on the grid. Therefore, in order to
accurately and truly reflect the fluid flow, the method of using
streamlines is closer and more accurate than the method of deter-
mining thefluiddistributionbasedongrids.And theflowdistribution
along the streamline is to fix the volume flow on each streamline, so
that the number of streamlines changes with the flow rate of the
injectionwell (Lv, 2009). Therefore, when the injection volume of the
injector is larger, the number of streamlines generated on the grid of
thewell is higher.When a producer produces a larger volumeoffluid,
more streamlines flow into the well. And the area with higher
streamline density, the higher the fluid velocity and vice versa.

Therefore, the streamline simulation can more intuitively and
accurately characterize the main fluid flow regions. To further
improve the water flooding effect, it is necessary to readjust the flow
field in the ultra-high water cut stage. Through the flow field
adjustment, the ineffectivemigrationof reservoirfluid is changed into
orderly flow, and the flow field is redistributed (Ghori et al., 2006).

2.2.2. Extraction of streamline characteristic parameters
After running the streamline simulation, the obtained stream-

line data are stored in the formatted files. Take Schlumberger's
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Frontsim simulator as an example. The Frontsim simulator
currently adopted a time-step streamline field corresponding to a
streamline file (Schlumberger, 2015). The streamline file format
consists of one SLNxxxx file for every report step and one SLNSPEC
file. The generated streamline files mainly preserve the geometry
and properties of streamlines, including the spatial position co-
ordinates of the streamlines, the flow velocity and saturation dis-
tribution of oil and water phases on the streamlines. To control the
file size, string information is stored in ASCII encoding, and UNIX-
Fortran unformatted binary files are used to store streamline
attribute information. Decoding streamline files at each time step
(Li et al., 2022), we can obtain the relevant streamline properties:

a) Streamline position attribute: For the three-dimensional
streamline field, the position attribute of a streamline is
characterized by a starting position point, a terminating
position point, and multiple intermediate points. The attri-
bute reflects the region and position of the streamline, while
these points join together to constitute a complete stream-
line. Therefore, the streamline field can be restored according
to the streamline position attributes. As seen in Fig. 1 for
report step 1, assume awater-oil case with three streamlines.
Three streamlines start at the injector “INJ1” and terminate
in producer “PROD1”. Using the decoded streamline data, we
can obtain the relevant streamlines in Fig. 1.

b) Water saturation: It represents the averagewater saturation
between two nodes on the streamline, which can be used to
calculate the remaining oil saturation and characterize the
remaining oil recovery potential of the area flowed along the
streamline.

c) Fluid velocity: It represents the velocities of water and oil
flowing along the streamline, and is the embodiment of the
fluid flow capacity on the streamline.

d) Grid ID: It describes the grid flowed along the streamline.
The starting point number on the streamline are the initial
injectionwells and the final productionwells specified by the
streamline. It can be used to determine the streamline
attribution of the injection-production units.
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2.2.3. Performance index construction
According to the extracted attribute information of streamlines,

the performance index of well production optimization problem is
constructed. We choose the fluid velocity and the water saturation
on the streamline as basic indicators for the following reasons. The
flow field is dynamic, and these indices are mainly selected to
describe the dynamic characteristics. Thus static geological pa-
rameters such as porosity and permeability are not considered.
Secondly, since pressure is an indicator in the flow field displace-
ment process, the greater the pressure difference, the greater the
fluid velocity, and there is a causal relationship between them.
Therefore, fluid velocity is chosen. In addition, water saturation is
the ratio of water phase volume to total fluid volume on the
streamline, which can be used to reflect the amount of remaining
oil and characterize the development potential of the flow field
region. Therefore, it is also selected.

However, due to the numerical dissipation problem (Jimenez
et al., 2005) of streamline simulations, the oil and water veloc-
ities may approach to zero on some streamlines, wherein the flow
capacity at the nodes of streamlines cannot be directly character-
ized by the oil and water velocities. Meanwhile, the water phase
permeability is usually high, and the water saturation increases
linearly in the later stage of oilfield development, which cannot
obviously characterize the flow field. Therefore, we defined two
parameters, that is, the remaining oil displacement efficiency of
streamline and the oil-water displacement pressure difference ratio
of streamlines to characterize the flow field.

Remaining oil displacement efficiency of streamline refers to
the ratio of current movable oil saturation to original movable oil
saturation on the streamline, and their formula are as follows.
Among them, Eq. (1) is the remaining oil displacement efficiency of
the streamline node, and Eq. (2) calculates the average remaining
oil displacement efficiency of the streamline.

Eroij ¼
1� Swij � Sor
Soinit � Sor

(1)

Eroi ¼
Xni

j¼1

Eroij
�
ni (2)

where Eroij is the remaining oil displacement efficiency of the
streamline node (i, j); Swij is the water saturation of the streamline
node (i, j); Soinit is the initial oil saturation; Sor is the residual oil
saturation; ni is the total number of nodes of the i-th streamline;
Eroi is the average remaining oil displacement of the i-th stream-
line; subscript i is the streamline number; subscript j is the number
of streamline nodes.

This index is defined to reflect the movable oil saturation of the
streamline and it can be used to characterize the development
potential of the flow field area. The larger the index value, the more
movable oil is not affected by the injected water along the
streamline direction at this moment. That is, the higher the
sweeping degree of the streamline to the high movable oil satu-
ration region, the greater the development potential.

Oil-water displacement pressure difference ratio of stream-
line refers to the pressure displacement difference ratio of oil phase
and water phase on the streamline. The formulas are Eqs. (3) and
(4).

DPowij ¼
mo,voij

Kro
�
Swij

�
,

mw,vwij

Krw
�
Swij

� (3)
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DPowi ¼
Xni

j¼1

DPowij =ni (4)

whereDPowij is the oil-water displacement pressure difference ratio
of the streamline node (i, j); vwij and voij are the flow rates of water
phase and oil phase of the streamline node (i, j); mw and mo are the
viscosity of water phase and oil phase, respectively, mPa s; Kro(Swij)
and Krw(Swij) are the relative permeability of oil phase and water
phase corresponding to thewater saturation of the streamline node
(i, j), respectively; DPowi is the average oil-water displacement
pressure difference ratio of the i-th streamline.

Wherein, the relative permeability of oil phase and water phase
corresponding to thewater saturation is calculated by the following
expressions (Goda and Behrenbruch, 2004).

Kro
�
Swij

�¼KroðSwminÞ
�
Swmax � Swij � Sor
Swmax � Swinit � Sor

�co
(5)

Krw
�
Swij

�¼KrwðSorÞ
�

Swij � Swc

Swmax � Swc � Sor

�cw
(6)

where Swc is the bound water saturation; Swinit is the initial water
saturation; Swmin and Swmax are the minimum and maximumwater
saturation values in the relative permeability curve, respectively;
Kro(Swmin) is the relative permeability of oil phase at minimum
water saturation; Krw(Sor) is the relative permeability of water
phase at residual oil saturation; co and cw are oil and water phase
permeability curve index, respectively, which can be obtained by
fitting the permeability curve.

This index is constructed to reflect the flow capacity between oil
and water in the flow field, which can used to characterize the
water flooding capacity in the flow field areas. When the velocity of
oil phase is greater than that of water phase on the streamline, it
means that the former has stronger flow capacity. Therefore, the
larger the value, the stronger the oil flow capacity along the
streamline direction, or the stronger the water flooding capacity.

The calculated Eroi and DPowi on each streamline were arith-
metically averaged, respectively. The overall remaining oil
displacement efficiency (Ero) and overall oil-water displacement
pressure difference ratio (DPow) of the flow field at this moment can
be obtained. The calculation expressions are:

Ero ¼
XL
i¼1

Eroi=L (7)

DPow ¼
XL
i¼1

DPowi =L (8)

where Ero is the overall remaining oil displacement efficiency of the
flow field at a certain time; DPow is the overall oil-water displace-
ment pressure difference ratio of the flow field at a certain time; L is
the total number of streamlines in the flow field at a certain time.

Ero can reflect the overall change of the remaining oil displace-
ment efficiency in the flow field corresponding to different devel-
opment moments. The larger the value, the more movable oil area
the streamline flows through at this moment. That is, the oil
displacement efficiency of the streamline to the movable residual
oil is higher. Besides, DPow can reflect the difference in oil-water
flow capacity of the flow field corresponding to different develop-
ment times. If the displacement pressure difference of the oil phase
on the streamline is higher than that of the water phase, it means
that the flow capacity of the oil phase is higher than that of the
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water phase, and the resistance of water displacement oil is rela-
tively small.

In order to comprehensively reflect the development effect of
the reservoir, a comprehensive index to characterize the flow field
is constructed based on Ero and DPow. That is, the flow field po-
tential coefficient, which is called by “Cfp”, and the calculation
formula:

Cfp ¼ Ero � DPow (9)

where Cfp is the flow field potential coefficient.
The flow field potential coefficient can comprehensively char-

acterize the matching relationship between movable oil saturation
and oil-water driving capacity in the flow direction of each
streamline. The larger the coefficient, the greater the overall in-
fluence of the flow field on the movable oil region, and the stronger
the oil phase movable capacity. The greater the corresponding
water flooding development potential, the better the future water
flooding effect. If the water flooding effect becomes better, it means
that more streamlines in the flow field control the highly saturated
oil region and improve the remaining oil production capacity.
Therefore, this coefficient can be used to quantitatively reflect the
water flooding effect of reservoir flow field adjustment.

The variation of streamline distribution is synchronized with
the adjustment measures taken by the reservoir. When the flow
field adjustment measures are completed, the underground
streamline will also be redistributed. The flow field potential co-
efficient at this time represents the maximum water flooding po-
tential. Therefore, the flow field potential coefficient calculated
instantaneously after the completion of flow field adjustment is
defined as the “instantaneous flow field potential coefficient”,
referred to as “IFPC”.

2.3. Streamline features-based objective function

Therefore, the maximum “IFPC” is used as the objective function
of well production optimization problem.

max IFPC ¼
XL
i¼1

ðEroiðQ Þ Þ �
XL
i¼1

ðDPowiðQ Þ Þ =L2

s:t: qinjmmin � qinjm � qinjmmax; m ¼ 1;2;/; r

qpronmin � qpron � qpronmax; n ¼ 1;2;/; s

Xr
m¼1

qinjm ¼ Qinj

Xs
n¼1

qinjn ¼ Qpro

Qinj ¼ Qpro

(10)

where Q is the fluid rate, m3/d; Qinj, Qpro are the total water in-
jection rate and the total oil production rate, respectively, m3/d;

qinjmin, q
inj
max are the minimum and maximum water injection rate,

respectively, m3/d; qpromin, q
pro
max are the minimum and maximum oil

production rate, respectively, m3/d; subscripts r, s are the number of
injection wells and production wells, respectively.

The objective function can reflect the matching degree of
movable oil saturation distribution and oil-water driving ability in
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each flow direction. This objective can evaluate the long-term
development effect of the flow field adjustment. The higher the
objective value, the higher the corresponding final cumulative oil
production, and the better the water flooding effect. When solving
the injection-production optimization problem, each iteration only
needs to call the streamline simulator to run one time step and
calculate the target. The objective function greatly reduces the
running times and improves the optimization efficiency.
3. Bayesian adaptive direct search optimization algorithm

BADS, proposed by Acerbi andMa (2017), is a global-local random
search algorithm. BADS is a hybrid Bayesian optimization (BO) (Jones
et al., 1998) method that combines the mesh adaptive direct search
(MADS) (Audet and Dennis, 2006) framework with a BO search
performed by a local Gaussian process (GP) surrogate, and imple-
ments it through some heuristics to improve the efficiency.

BADS alternates between a series of fast local BO steps (the
search stage of MADS) and a systematic, slower exploration of the
mesh grid (poll stage) (see Fig. 2). These two stages complement
each other, and in the search stage we can efficiently explore the
space and provide an adequate surrogate model. When the search
stage fails repeatedly, which means that the GP model cannot help
optimization (e.g., due to the specified error model, or excess un-
certainty), BADS switches to the poll stage. Fail-safe andmodel-free
optimization is performed in poll stage, in which BADS collects
information about the local shape of the objective function to
construct a better proxy for the next search stage. In this algorithm,
sampling points generated in the process of BO are used as the
assistant method of MADS algorithm to search for advantages,
which improves the success rate of sample points selection and
reduces the number of iterations of the algorithm. Therefore, BADS
algorithm can improve the optimization efficiency and conver-
gence speed.
3.1. Search stage

In the search stage, a Gaussian process is fit to a local subset of
the points evaluated so far. Then, we iteratively choose points to
evaluate according to a lower confidence bound strategy that trades
off between exploration of uncertain regions (high GP uncertainty)
and exploitation of promising solutions (low GPmean). The process
is calculated by themesh size parameterDm

k and themesh direction
set D, among which the mesh size parameter Dm

k is used to control
the search range.

Before the kth iteration, the optimal solution of the objective
function is denoted as xk, and the set of calculated feasible solutions
is defined as Sk. The set formed by all search points is defined asMk,
and its expression is as follows:

Mk ¼ fx2Skg∪
�
xk þ Dm

k Dz
�

(11)

where z is a full rank positive integermatrix, z2Zpþ; p is the number
of direction vectors; Zþ is a set of non-negative integers.

There are four steps involved in the search stage.
Step 1: Constructing grid cells with xk as search center.
Step 2: Calculate the target value of finite grid points near the

construction grid element and find the feasible solution to improve
the objective function.

Step 3: If a feasible solution to improve the objective function is



Fig. 2. BADS procedure (Acerbi and Ma, 2017).
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found, the search is successful. At this point, move the grid center to
the place, and themesh size parameterDm

kþ1 is increased at the kþ 1
iteration step.

Step 4: Failure to find a feasible solution to improve the objec-
tive function indicates that the search process of the iteration step
fails. Then turn to the next optimization step, that is, the poll stage.
At the same time, the grid size parameter Dm

kþ1 is reduced at the kþ
1 iteration step.
Fig. 3. Flow chart of well production optimization with IFPC-based BADS optimization.
3.2. Poll stage

When the search stage fails to find a feasible solution to improve
the objective function, the poll stage is performed. In the poll stage,
points are evaluated on a mesh by taking steps in one direction at a
time, until an improvement is found or all directions have been
tried. The step size is doubled in case of success, halved otherwise.
This process is controlled by the size parameter Dp

kþ1 of the
screening frame.

In the poll stage, the set composed of directions with large
density in the feasible search range is defined as the screening point
set Pk, where Dk is the matrix composed of column elements in the
grid direction set.

Pk¼
�
xk þDm

k d:d2Dk
�
3Mk (12)

During the whole poll stage, the parameter Dm
k should be less

than the parameter Dp
kþ1. When a feasible solution to improve the

objective function is found, it shows that the poll stage of the
iterative step is successful. At this moment, move the mesh center
to the improvement point and continue the next poll stage. When
the objective function is not improved, it indicates that the iterative
step is failed. At this time, the control parameters Dp

kþ1 and Dm
k are

reduced, and the reduction speed of Dp
kþ1 is guaranteed to be less

than that of Dm
k . In the poll stage, it is easy to fall into a limited set,

so this update method is adopted to avoid it, to improve the
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probability of finding the optimal direction.
In this stage, the optimization strategy of global pattern search

optimization (GPS) is extended by generating the set of screening
points, and the local optimization and direction can be screened.
Hence the BADS algorithm has a fast convergence speed and effi-
cient local optimization ability.
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3.3. IFPC-based BADS optimization description

Fig. 3 shows the flow chart of well production optimization
using streamline features-based objective function and BADS al-
gorithm. We refer to this method as the IFPC-based BADS optimi-
zation in the next section.

4. Results and discussion

In this section, the relationship between the objective function
and the cumulative oil production is obtained by giving fluid flow
schemes for different producers in the reservoir randomly, and the
feasibility of the objective function is verified. Then, the well pro-
duction in the egg model are optimized using IFPC-based BADS
optimization method. And the efficiency and accuracy of BADS al-
gorithm is verified compared with other four common algorithms.
Besides, two conventional optimization objective functions and
IFPC objective function are used to compare the optimization effi-
ciency, which verifies the efficiency and accuracy of the new
method. The Frontsim simulator (GeoQuest, 2016) was used to
calculate specific well production data, and the optimization algo-
rithm in MATLAB software (MATLAB, 2019) is used to generate the
optimizedwell production. In the optimization process, the optimal
well production can be obtained by coupling Frontsim simulator
with MATLAB program.

4.1. Example I: a 2-D heterogeneous model for objective function
validation

4.1.1. Reservoir model description
The basic model used in this section is a 2-D heterogeneous

reservoir (Christie and Blunt, 2001), which is a cut-off of SPE10
benchmarkmodel. Themodel is a five-spot well pattern, andmodel
uses 50� 50� 1 grid blocks with model size of 360� 360� 20 m3,
and the depth of top phase is 1900 m. Besides, Fig. 4 shows
permeability and porosity fields. The oil and water relative
permeability curves are plotted in Fig. 5(a). In order to further verify
Fig. 4. Permeability and porosity maps o
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the applicability of the objective function, the oil viscosity and re-
sidual oil saturation distribution of the formation are changed. As
shown in Table 1, it is the basic parameters of the three reservoir
models. The curve in Fig. 5(b) is taken from an actual reservoir.

As shown in Fig. 4, one vertical injector is deployed at the center
of the reservoir, and four producers are located in each corner. The
injection rate is 80 m3/d, and the liquid production rate of the four
producers is 20 m3/d, respectively. The reservoir has the same
initial water saturation throughout.

To obtain the relationship between the IFPC and cumulative oil
production, we developed different fluid distribution schemes for
producers. The fluid volume of the injector remains unchanged,
that is, 80 m3/d. And the total liquid production also remains the
same, 80 m3/d. In order to change the liquid production volume of
the four producers, we set the value range of the liquid volume of
the four producers as 0e80 m3/d, and the liquid volume is a mul-
tiple of 5, that is, 0, 5, …, 80 m3/d. Therefore, there are 969 liquid
distribution schemes for each model. When water cut of the model
reaches 95%, the above liquid volume scheme is used for produc-
tion and developed to the same time. Due to the different distri-
bution of fluid volume in the four producers, corresponding
different flow field distributions appear. It makes the calculated
instantaneous flow field potential coefficients and the corre-
sponding cumulative oil production also different.
4.1.2. Results and discussion
The Frontsim simulator is used to simulate 969 liquid distribu-

tion schemes for each model. The IFPC is calculated by Eq. (9) and
the cumulative oil production is calculated by reservoir simulator
Eclipse, respectively. The relationship of the IFPC and the cumula-
tive oil production of three reservoir models are shown in Fig. 6.
There are a total of 969 points, each of which represents the IFPC
and the corresponding final cumulative oil production under a
production well fluid distribution scheme. It demonstrates that the
IFPC is positively associated with the cumulative oil production. In
other words, when the IFPC is higher, the reservoir can achieve a
higher cumulative oil production, in which case the streamlines
f Example I (k is the permeability).



Fig. 5. Oil and water relative permeability curves (Sw is the water saturation; Kr is the relative permeability).

Table 1
Verify the basic parameters of Example I.

Model Oil and water relative permeability curve Residual oil saturation Formation oil viscosity, mPa s

Basic model Fig. 5(a) 0.2 2.4
Model 1 Fig. 5(a) 0.2 65.0
Model 2 Fig. 5(b) 0.3 30.0
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will be concentrated in the high saturation oil region.
As can be seen from Fig. 7 and Table 2, when the IFPC becomes

larger, the liquid production rate of the producers P1 and P2 in-
creases under the condition of the same well pattern. It increases
the streamline density flowing through the highly saturated
remaining oil region. In this case, the more movable oil is displaced
from the reservoir in the future, the less oil remains. In the area
where the displacement is relatively sufficient, the streamline
density is reduced. Therefore, if the liquid volume scheme which
can achieve the maximum IFPC is found, the working system cor-
responding to the maximum cumulative oil production can also be
obtained. Thus the feasibility of streamline feature-based objective
function in well production problem is proved.
4.2. Example II: egg model for BADS optimization algorithm

4.2.1. Reservoir model description
The egg model is adopted to verify that IFPC-based BADS opti-

mization method can effectively optimize well production. Besides,
we selected global pattern search optimization (GSS), multilevel
coordinate search optimization (MCS) (Lambot et al., 2002), PSO,
CMA-ES, and BADS algorithm respectively to solve the optimization
problem. And the optimization performance of these algorithms is
compared from the three aspects of the accuracy, convergence
speed, and solution stability of the optimization results.

The egg model is represented by 60� 60� 7 ¼ 25200 grid cells
of which 18,533 cells are active. The grid block size is set to 8 m�
8 m� 4 m, and the net to gross thickness ratio is set to 1.0. The
details of the geological and fluid parameter settings of the egg
model can be found in (Jansen et al., 2015). The longitudinal het-
erogeneity of the seven layers in the original model is small, so the
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third layer is selected as the research object. Fig. 8 displays the
permeability and the default placement of wells. The model con-
sists of four injectors and eight producers placed, and these wells
form a five-spot well pattern. Besides, the model has an average
permeability of 1221.10 mD, a porosity of 0.2, and a top depth of
4008 m. We consider an oil-water two-phase flow in this model.
The initial rate of individual well in the model is shown in Table 3.
The reservoir lifetime is set to 3600 days.

Fig. 9(a) shows the distribution of streamline oil saturation
when the water cut of the model is 90%, and the remaining oil
saturation distribution at the end of production is presented in
Fig. 9(b). The displacement is not balanced in reservoir at present.
In order to improve this reservoir development effect, we seek to
optimize the liquid rates of four injectors and eight producers with
90% water cut. There are 12 optimization variables. Only bound
constraints are considered and the detailed optimization parame-
ters are given in Table 4.
4.2.2. Results and discussion
The complexity of the optimization problem determines the

total calculation times of the objection function. Meanwhile, the
determination of population number and iterative steps in the
optimization algorithm can affect the probability of falling into
local optimum. As in previous studies, when the optimization
variables are less than 20, the evaluation number of objective
functions is usually 1250 to 10000 times (Nwankwor et al., 2013;
Jesmani et al., 2016). The eggmodel has 12 optimization variables in
example II. Therefore, when we set the maximum number of iter-
ations to 50 and the population number to 30, the maximum
number evaluated by the objective function is 1500. Algorithm
parameter setting: (1) For BADS, we use the setting from (Acerbi



Fig. 6. Cumulative oil production versus IFPC under different liquid distributions.
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and Ma, 2017). (2) For GSS parameter settings, we use a 2n positive
spanning set, where n is the dimension of the search space. The
expansion factor is set to 2, and the contraction is set to 0.5. (3) Our
implementation of PSO uses the population size of 50, and the
weighting parametersw¼ 0.9, c1 ¼ 0:5, and c2 ¼ 1:25. (4) ForMCS,
the number of levels is chosen as smax ¼ 5nþ 10, where n is the
dimension of the problem. The maximal number of visits in the
local search is 50, and the acceptable relative accuracy for local
search is r ¼ 0:01. (5) For CMA-ES, we use the setting from (Hansen
and Kern, 2004).

Since CMA-ES, PSO, and BADS algorithms belong to the sto-
chastic search algorithm, each optimization result obtained by
these algorithms is different. Therefore, to eliminate the influence
of randomness on the performance of the algorithm, the same
initial point is used for iteration. The average performance obtained
by each optimization algorithm running independently for 10 times
is considered as the optimal well production. The initial points of
the five algorithms adopt the median values of the upper and lower
limits of each optimization variable. Thus, the initial solutions
corresponding to the initial values of the algorithm are completely
the same.

Plots of the IFPC of the five algorithms versus the number of
simulation runs are shown in Fig. 10. As in Example II, 10 trials are
performed for CMA-ES, PSO, and BADS, and the solid lines depict
the average IFPC overall 10 trials. Since GSS and MCS are deter-
ministic algorithms, only one trial is performed.

In terms of convergence speed, there are differences among the
five optimization algorithms (Fig. 10). We can see that GSS con-
verges slower than PSO at an early stage, but eventually GSS obtains
higher IFPC. Although PSO can search very large space of candidate
solutions, and the stochastic element of the movement of the
population reduces the chance of getting trapped at an unsatis-
factory local optimum, PSO does not guarantee an optimal solution
is ever found. Besides, the convergence speed of CMA-ES is higher
than that of PSO and GSS. Unlike the population-based stochastic
search algorithms, such as GA, PSO, candidate solutions of CMA-ES
are sampled from a probability distribution which is updated iter-
atively. In addition, in the deterministic search algorithm, MCS
performs better than GSS in both search speed and search results.
However, BADS shows excellent convergence speed at the early
stage of optimization (number of function evaluations <200), and
IFPC reaches the highest. This is useful for optimization given a
limited computational budget. Since BADS algorithm is coupled
with MADS and Gaussian process, it can effectively explore space
and provide an adequate surrogate model in the search stage. And
in the poll stage, the optimization strategy is extended by gener-
ating the set of screening points, and the local optimization and
direction can be screened. Therefore, BADS has a faster convergence
speed and efficient optimization ability compared with other four
common algorithms.

Furthermore, we analyzed the randomness of BADS, CMA-ES,
and PSO, that is, the stability difference. Fig. 11 shows the range
of IFPC for the iterative curves of the three algorithms running 10
times separately, and the shadow section represents the region
between the minimum and maximum values in the 10 times
optimization process.

In terms of solving stability, BADS has good stability (Fig. 11). In
the whole optimization process, PSO has an obvious difference in
each operation result and does not converge when the number of
iterations reaches 1500. The IFPC has been steadily improving in
the whole optimization process, indicating that PSO needs more
iterations to find the optimal solution. This is because PSO is a



Fig. 7. Instantaneous streamline distribution and residual oil saturation distribution corresponding to the minimum IFPC (a) and the maximum IFPC (b). Among them, the
streamline distribution is the instantaneous distribution after the liquid volume adjustment, and the remaining oil saturation distribution is the distribution after the liquid volume
adjustment to the end of development.

Table 2
Fluid production rates of corresponding producers at minimum and maximum IFPCs.

Case Production rate, m3/d Cumulative oil production, 105 m3 IFPC

P1 P2 P3 P4

Case 1: Liquid production rate corresponding to the minimum IFPC 0 0 80 0 1.194 0.057
Case 2: Liquid production rate corresponding to the maximum IFPC 50 20 10 0 2.599 0.103
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stochastic search algorithm, and its ability to converge to the
optimal value is poor. Besides, in the early stage of iterative opti-
mization, the results of 10 times CMA-ES have large fluctuations.
And with the increase in iteration steps, CMA-ES convergence dif-
ference becomes smaller. This is because CMA-ES is a local search
algorithm, which is easy to fall into local optima. In addition, we can
see that PSO has converged to different locations for each trial.
Compared with CMAES, PSO is more easily falls into local optima in
our test cases, in spite of the larger population size and the ability
search the entire space. However, BADS is a local-global search
algorithm. In the whole optimization process, the difference
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between each running result is small, and the later optimization
can converge to the same value.

To further compare the difference in the optimization accuracy
of the algorithms, Fig. 12 presents boxplots of the final IFPC for 10
runs. And the IFPC values of five optimization algorithms are given
in Table 5 and Table 6.

According to the boxplot in Fig. 12 and Tables 5 and 6, the BADS
algorithm obtains the highest IFPC after 1500 simulation runs. The
standard deviation of the BADS algorithm (0.0005) is lower than
that of the CMA-ES algorithm (0.0027). The average IFPC of the
BADS algorithm (0.3374) is higher than that of the CMA-ES



Fig. 8. Egg model displaying the permeability and the well placement for Example II.

Table 3
Initial rate of individual well in Example II.

Well Initial rate, m3/d

INJ-01, INJ-04 20
INJ-02, INJ-03 60
PRO-01, PRO-03, PRO-06, PRO-07 10
PRO-04 20
PRO-02, PRO-08 30
PRO-05 40 Fig. 10. Optimization performance for Example II.

Table 4
Optimization parameters used in Example II.

Parameter Value

Optimization variables 12
Minimum rate of injectors, m3/d 0
Maximum rate of injectors, m3/d 90
Minimum rate of producers, m3/d 0
Maximum rate of producers, m3/d 40
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algorithm (0.3345), increasing by 0.87%. Compared with PSO al-
gorithm, BADS algorithm improves by 3.43%. The standard devia-
tion for the PSO algorithm is larger than the standard deviation for
CMA-ES algorithm. Therefore, according to the average IFPC and the
Fig. 9. Streamline and saturation
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standard deviation, the search performance of the BADS algorithm
is better than other optimization algorithms.

Based on the above analysis, it can be concluded that the BADS
algorithm is superior to other optimization algorithms in conver-
gence speed, solution stability and optimization accuracy.
distribution in Example II.



Fig. 11. Convergence progresses of BADS, CMA-ES, and PSO over 10 runs.

Fig. 12. Boxplot of objective function optimized by PSO, CMA-ES, and BADS in Example
II.

Table 5
Results of deterministic algorithms for Example
II.

Algorithm IFPC

GSS 0.3288
MCS 0.3353
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4.3. Example III: optimization efficiency of IFPC-based BADS method

This section is still based on the egg model in Section 4.2. In
order to illustrate and verify the optimization efficiency and accu-
racy of the established method, we propose three optimization
strategies for comparison.

Strategy A: the problem is optimized by using conventional well
production optimization method and only coupling Eclipse with
BADS to get maximum cumulative oil production (COP).

Strategy B: optimize this problem only by coupling Eclipse with
BADS to get minimum standard deviation of saturation (sSw )
(Wang, 2016), which is a commonly used as well production opti-
mization method.

Strategy C: optimize this problem by IFPC-based BADS optimi-
zation to get the maximum IFPC.

Fig. 13 shows the convergence results of three strategies. We
take the average of these 10 times solutions as the optimal well
production. The comparison of these three methods’ results is lis-
ted in Fig. 14.

Strategy A used Eclipse with BADS algorithm to get maximum
COP. This method converges after 35maximum iterationswith total
CPU time of 88618 s. The calculation process of objective function
needs to call the simulator to run until the end of development,
which is time-consuming and takes up most of optimization time.
The optimal well production is then entered into Eclipse to calcu-
late strategy A's final COP. When the maximum iteration is 31,
strategy B reaches convergence condition, and the total CPU time is
81576 s. Strategy C is a new method. We just called a time step in
Eclipse and calculated the IFPC. And strategy C only needs 6255 s to
obtain the optimal solution from Fig. 14. It can be seen that IFPC-
based BADS optimization method is 14.2 times faster than the
conventional method (strategy A) and 13 times faster than strategy
B. This method can quickly find the best solution, because the IFPC-



Table 6
Results of stochastic algorithms for Example II.

Algorithm Trials IFPC Standard deviation of IFPC

Maximum Minimum Mean

PSO 10 0.3364 0.3168 0.3263 0.0054
CMA-ES 10 0.3402 0.3313 0.3345 0.0027
BADS 10 0.3384 0.3368 0.3374 0.0005

Fig. 13. Convergence of three optimization strategies in example III.

Fig. 14. Comparison of three optimization strategies in example III.

Fig. 15. Cumulative oil production and water c
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based BADS optimization has the following advantages. The
advantage of IFPC-based BADS optimization is that the objective
function only needs to call the reservoir numerical simulator to run
a time step, instead of calling the simulator to calculate the target
value at the end of development. As shown in strategies A and B,
the reservoir numerical simulator requires significant time to
evaluate the objective function. The egg model is a simple ideal
model. If the actual reservoir is used for optimization, the IFPC-
based BADS method will have greater advantages in optimization
efficiency.

The COP for three strategies versus production time are plotted
in Fig. 15(a). And the water cut versus oil recovery between three
strategies is also shown in Fig. 15(b). It indicates that strategy A's
cumulative oil production is 19.22 � 104 m3, and strategy B's cu-
mulative oil production is the same as strategy C, both of
19.33 � 104 m3. The relative error values of cumulative oil pro-
duction of three strategies are 0.57%, 0.0%, and 0.0%, respectively.
Besides, all three strategies increase oil accumulation by more than
15% and improve oil recovery by more than 4.2%. It can be seen that
the maximum COP obtained by this method is the same as strategy
B and close to strategy A. In addition, the calculation time is 14.2
times faster than the conventional method (strategy A). Therefore,
this method can quickly and accurately converge to the optimal
solution. If the time-cost is considered, the IFPC-based BADS
method, namely strategy C, is a better choice.

The instantaneous streamline distribution optimized by strat-
egy C and oil saturation distribution at the end of production is
illustrated in Fig. 16. Besides, Fig. 17 shows the change of fluid
volume in individual well before and after optimization. Compared
with Fig. 9 before optimization, the saturation distribution after
optimization is more balanced. After optimization, the streamline
of remaining oil enrichment area is increased and the oil
displacement in the enrichment area is accelerated. In addition, the
ut versus oil recovery for three strategies.



Fig. 16. Streamline and remaining oil saturation distribution optimized by strategy C.

Fig. 17. Injection and production rates for the egg model before and after optimization.
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original diversion streamline area becomes the main streamline
area, so that the remaining oil that cannot be effectively displaced
in the original diversion streamline area can be effectively used. The
matching of streamline and well pattern is realized.
5. Conclusions

Well production optimization method based on the streamline
features based-objective function and the BADS algorithm is pro-
posed to improve optimization efficiency. The objective function,
which represents the water flooding potential, is extracted from
streamline features. The index comprehensively considers the in-
fluence of movable oil saturation and fluid velocity along stream-
lines. It only need to call the reservoir numerical simulator to run
one time step and calculate the target value, instead of calling the
simulator to calculate the target value at the end of development
stage, which greatly reduces the running time of the simulator and
has significant advantages for large-scale reservoir application.
Besides, this new objective function is positively correlated with
the cumulative oil production, which verifies its feasibility in well
production problems. In addition, the well production optimization
model is established and solved by the BADS algorithm based on
this objective function. Compared with the GSS, PSO, CMA-ES, and
MCS algorithms, the BADS algorithm has advantages in conver-
gence speed, solution stability, and optimization accuracy. Besides,
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the IFPC-based BADS method can significantly improve the well
production optimization efficiency compared with the objective
function calculated by traditional method. The method proposed in
this paper can help to determine the optimal well production more
efficiently for actual oilfield development. Due to the complexity of
flow field, the currently established decoding rules for extracting
streamline data are appropriate for single-layer reservoirs. For
multi-layer reservoirs, it is necessary to determine the longitudinal
perforation grid ID between injection-production wells, then use
the samemethod to establish the objective function to optimize the
well production.
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