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ABSTRACT

In this paper, we proposed a novel method for low-field nuclear magnetic resonance (NMR) inversion
based on low-rank and sparsity restraint (LRSR) of relaxation spectra, with which high quality con-
struction is made possible for one- and two-dimensional low-field and low signal to noise ratio NMR
data. In this method, the low-rank and sparsity restraints are introduced into the objective function
instead of the smoothing term. The low-rank features in relaxation spectra are extracted to ensure the
local characteristics and morphology of spectra. The sparsity and residual term are contributed to the
resolution and precision of spectra, with the elimination of the redundant relaxation components.
Optimization process of the objective function is designed with alternating direction method of multi-
ples, in which the objective function is decomposed into three subproblems to be independently solved.
The optimum solution can be obtained by alternating iteration and updating process. At first, numerical
simulations are conducted on synthetic echo data with different signal-to-noise ratios, to optimize the
desirable regularization parameters and verify the feasibility and effectiveness of proposed method.
Then, NMR experiments on solutions and artificial sandstone samples are conducted and analyzed,
which validates the robustness and reliability of the proposed method. The results from simulations and
experiments have demonstrated that the suggested method has unique advantages for improving the
resolution of relaxation spectra and enhancing the ability of fluid quantitative identification.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

permeability (Jin et al., 2020), fluid mobility (Pang et al., 2017), fluid
property (Singer et al., 2017), wettability (Liang et al., 2019) and etc.,

Nuclear magnetic resonance (NMR) is a well-known and so-
phisticated technology, and has been widely applied to many sci-
entific fields, such as chemical engineering, material science,
medicine, agriculture, space science and etc (Casanova et al., 2011;
Johns et al.,, 2013). Nowadays, NMR has been an indispensable
technique and a gold tool for the reservoir exploration and devel-
opment in petroleum industry (Song and Kausik, 2019). With the
capability to directly detect the dynamics of fluid molecules in
porous rocks, petrophysical parameters, such as pore structure,
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can be effectively obtained. Those parameters are of great signifi-
cance to the key issues like oil/gas detection, drilling/completion
scheme, reservoir evaluation and oil recovery during the process of
oil/gas exploration and development. For instances, wireline NMR
(Coates et al., 1999) and logging while drilling NMR (Hursa et al.,
2020) for real-time reservoir evaluation, NMR rock core analysis
for the study of hydration process and mechanism of oil well ce-
ments (Liu et al., 2021), and the monitoring process of fluid/gas
flooding by using NMR system for quantifying the oil recovery rate
(Siavashi et al., 2022), are all hot topics in petroleum industry
nowadays.

In practical applications, Carr-Purcell-Meiboom-Gill (CPMG)
pulse sequence (Carr and Purcell, 1954; Meiboom and Gill, 1958)
and its variants are normally used as the basic detection means to
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accurately measure the formations. CPMG-based pulse sequences
can greatly reduce the effects of strong dephasing due to the direct
or induced magnetic field inhomogeneity, to ensure the precision of
each measurement (Xiao et al., 2013). Echo data is acquired with
CPMG pulse sequence and the relaxation spectra, including one-
dimensional (1D) T; and T», and two-dimensional (2D) T;-T, and
D-T», can be constructed with inverse Laplace transformation (ILT)
method for subsequent interpretation and application (Xie and
Xiao, 2011; Song et al.,, 2002; Hiirlimann and Venkataramanan,
2002). Most importantly, the accuracy and resolution of relaxa-
tion spectra are the critical prerequisites for characterizing pore
structure, permeability, viscosity and conducting fluid
identification.

Generally, the signal response equation of 1D/2D NMR mea-
surements can attribute to the Fredholm integral equation of the
first kind, which is a serious ill-conditioned equation with the
number of solutions far less than the number of equations, and
there is no referable analytical solution. Moreover, the inversion
process is very sensitive to noise, and a small disturbance of noise
will cause the deviation of the result. So far, the ILT method can be
divided into two parts: one is the singular value decomposition
(SVD) method based on iteration idea and Bulter-Reeds-Dawsons
(BRD) method based on regularization theory (Prammer, 1994;
Butler et al., 1981). However, in order to improve the sparsity while
maintain the smoothness of relaxation spectra, regularization
methods are widely used for practical data processing (for example,
T, spectra converted into pseudo capillary pressure curve, and etc.).
In this idea, a regularization term is added into the objective
function and has a constraint on the solutions.

The published literatures on NMR data inversion methods
based on regularization theory can mainly divide into four cat-
egories: [, regularization, l; regularization, maximum entropy
regularization and double-parameter regularization. [, regulari-
zation is a method that considers the I norm of the solution as a
constraint to solve the objective function, and mainly ensure the
smoothness of the solution. Boriga et al. proposed a uniform
penalty function to constrain the inversion solution (Borgia et al.,
2000), and change the regularization parameter in the inversion
process. This method can fit the sharp peaks of T> spectra, but
may not be converged. Venkataramann et al. and Song et al. used
the I, norm as the penalty function term, and solved the objec-
tive function with BRD method, to obtain the 2D NMR D-T, and
T1-T, relaxation spectra (Hiirlimann and Venkataramanan, 2002;
Song et al., 2002). Moreover, the I, problem can be solved by
Levenberg Marquard (LM) method. Zou et al., reconstructed the
objective function combining mixed [/l, residual term with [,
regularization term, which was solved by LM method (Zou et al.,
2018), and verified the effectiveness of this method for inverting
1D T, spectra and 2D D-T, spectra. Jin et al. employed the integral
transformation method to extract a priori information from the
NMR raw echo data, which is used to reconstruct the residual
term of the objective function, leading to the improved accuracy
of quantitative identification of the bound water (Jin et al., 2019).
The regularization term is based on I, norm and solved with the
BRD method. l; regularization is a method that considers the [
norm of the solution as a constraint to solve the objective
function, and fully considers the sparsity of the solution. Zhou
et al. proposed a fast threshold iteration method to solve the
objective function based on [; regularization constraint, to
improve the resolution of the Ty-T, relaxation spectra (Zhou
et al.,, 2017). Reci et al. developed a method combining primal-
dual with mixed gradient, to solve [y regularization problem,
and concluded that the proposed method is superior to the
traditional methods, such as the BRD and SVD method (Reci et al.,
2017). Guo et al. proposed a double-objective function and
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corresponding optimization method (Guo et al., 2019), in which
I regularization is used to solve the first objective function. The
solution of l; problem was then considered as the initial input to
iteratively search the optimal solution with conjugate gradient
(CG) method, leading to a good noise resistance and improved
resolution of relaxation spectra. Maximum entropy regulariza-
tion method also considered the sparsity of the solution. Chou-
zenoux et al. firstly employed Shannon entropy as the penalty
function (Chouzenoux et al.,, 2010), and solved the objective
function with Newton method, leading to better sparsity of T-T>
relaxation spectra. Considering the abnormal construction of
short relaxation component in the inverted spectra when Shan-
non entropy method was used, Zou et al. suggested an improved
Shannon entropy as the penalty function and solved it with the
LM method (Zou et al., 2015). The double-parameter regulariza-
tion is the combination of I, and [ regularization or maximum
entropy, which considers both the smoothness and sparsity of
solution. Berman et al. suggested that [; norm and I; norm could
be introduced as two penalty functions constrained on the so-
lution (Berman et al.,, 2013), and the objective function was
solved with primal-dual interior point method, leading to stable
and sparse 1D relaxation spectra. Guo et al. suggested that I,
norm and Shannon entropy can be used as two penalty terms,
which could be solved with the LM method (Guo et al., 2018).
Numerical simulation and rock data processing verified the
effectiveness of this method.

To overcome the selection of regularization parameters,
methods based on the iteration idea are developed. Prammer et al.
proposed truncated singular value decomposition (TSVD) method
for inverting NMR echo data at first (Prammer, 1994). Since then,
many researchers improved TSVD method. Tan et al. proposed
LSQR-TSVD hybrid method for inverting 2D NMR relaxation
spectra, in which an initial guess of solutions from LSQR is input
into the TSVD process to obtain more precise spectra than that by
solely using traditional TSVD methods (Tan et al., 2012). Su et al,,
demonstrated an inversion method worked on 2D spectra by
combining L-curve and LSQR method (Su et al., 2016), in which a
suitable iteration scheme can be selected for the inversion process.
Ge et al. proposed a method combining TSVD with parallel particle
swarm optimization algorithm to achieve NMR inversion (Ge et al.,
2016).

Furthermore, using machine learning method to obtain NMR
relaxation spectra is an inspired and effective inversion method.
Wang et al. proposed a new inversion method based on sparse
Bayesian clustering, in which the solution of I, problem was
considered as a priori condition, leading to an improved resolution
(Wang et al., 2017). This method was employed for inverting T;-T»
relaxation spectra, which only required a few TW sampling points
and had the performance with noise adaptivity. Parasram et al. used
the artificial neural network method to learn the synthetic echo
data, and used the trained model to directly invert the echo data,
which improved the accuracy of quantitative identification of free
fluid components (Parasram et al., 2021). However, this method
required large number of prior simulation data sets for model
training, which is very time-consuming. It is worth mentioning that
the accuracy of inversion results and the resolution of the spectra
can also be improved by suppressing the noise characteristics with
denoising methods. The published NMR denoise methods include
wavelet threshold method (Xie et al., 2015; Ge et al, 2015),
morphological method (Gao et al., 2020), cosine transform method
(Gu et al., 2021) and dictionary learning method (Luo et al., 2022),
which are not described here.

As mentioned above, each method has its special advantage, but
explicit or implicit parameter selection or adjustment will finally
affect the inversion results. In practical applications, the one-
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dimensional and multi-dimensional NMR relaxation spectra should
have the following properties: (1) the spectra need to be sparse
enough, which can effectively identify the fluid and accurately
calculate the relative content of the fluid components; (2) the
spectra need to maintain smoothness or stability, which can
effectively reflect the continuous distribution of fluid in the rock
pores and characterize the pore structure. However, the two
properties are normally difficult to maintain at the same time
(either too sparse or too smooth). The probability of artificial peaks
increases with the complexity of fluid components and lower SNRs,
because traditional methods do not effectively address the sparse
and redundant characteristics of relaxation spectra in the inversion
process. In the work of NMR spectroscopy reconstruction, Qu et al.
proposed a method to reconstruct the spectra based on the low-
rank property of undersampled free induction decay signals (Qu
et al., 2015). The signal property is fully utilized to recover the
undersampled NMR signals with high quality, and the spectra after
Fourier transform can maintain the Lorentz morphology very well.
Inspired by the work of Qu et al., we sincerely consider that this
idea can be applied to the construction of low-field NMR relaxation
spectra. With the introduction of low-rank and sparsity property,
high quality relaxation spectra can be obtained.

In this paper, we propose an inversion method based on non-
negative low-rank and sparsity constraints, to construct the
objective function with two regularization terms, and solve the
objective function using the alternating direction method of mul-
tiples (ADMM) method. Numerical simulations are conducted on
synthetic echo data at different signal-to-noise ratios (SNRs), to
optimize the desirable regularization parameters and verify the
feasibility and effectiveness of proposed method. Then, practical
NMR experiments on fluids and artificial sandstone samples are
conducted and analyzed, which validates the robustness and reli-
ability of proposed method. Simulations and experiments demon-
strate that, proposed method has unique advantages for improving
the resolution of spectra and enhancing the capability of fluid
quantitative identification.

2. Methodology
2.1. 1D and 2D NMR signal responses

For unconventional oil and gas reservoirs exploration, especially
for shale reservoirs, 1D T, and 2D T;-T, pulse sequences based on
CPMG are normally employed for NMR signal acquisition. The
inverted NMR spectra can be used for quantitative evaluation of
pore structure, fluid mobility, fluid properties and etc (Zhao et al.,
2021; Liu et al., 2021). Therefore, this study mainly focuses on the
construction of 1D T, and 2D T;-T; relaxation spectra with proposed
method.

The spin echo data is subject to the multi-exponential decay
model (Coates et al., 1999). When CPMG pulse sequence is used, the
signal response of 1D T, measurement can be expressed by the
following Eq. (1):

b(©) = [F(Ta)exp(~ t/T)dTs + & (1)

Here, b(t) is the measured signal amplitude at t moment. The
process of solving f(T,) is the inverse Laplace transformation.
However, continuous f(T,) cannot be directly obtained. Therefore,
the relaxation time must be discretized into a vector at first and the
upper and lower boundaries need to be defined. It is assumed that
all the T, relaxation times in decayed signal will not be exceeded
over pre-selected boundaries. The discrete form of Eq. (1) can be
written as:
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Tz.max

be= ) f(Tzj)exp

T2 min

28

< - E) +é&k (2)

Here,j = 1,2,---,n, n is the number of discrete relaxation time;
k =1,2,---,m, m is the echo number; t; is acquisition time and is
two times of echo spacing TE (components with relaxation time less
than TE will not be detected in NMR experiments); by is the
amplitude of k-th echo; ¢ is the noise level of k-th echo; T is the j-
th component of preselected relaxation times and f(T,;) is corre-
sponding amplitude.

Similarly, the signal response equation of 2D T;-T, can be
expressed as the integral Eq. (3):

b(t,TW):”f(Tl,Tz) (1 —2exp(—M) )exp(—i) dTdT; +e¢
T T
(3)
The discrete form of Eq. (3) is:

1

mm";il’fmnal,rz)(1—2EXP(—§W ) oo, ) v
@)

1,m
Here, m= 1,2, ---,m’, m’ is the number of discrete component of
T; relaxation time; n= 1,2, ---, n’, n’ is the number of discrete
component of T, relaxation time; TW; is the waiting time;
fmn(Tq,T) is the amplitude of 2D T;-T, relaxation spectra.

bij:
m=1

2.2. Problem description

Egs. (2) and (4) are discrete forms of NMR signal response, and
the amplitude of each echo is contributed from all relaxation
components. Therefore, Eqs. (2) and (4) can be written as a matrix
form:

b=Kf +n (5)
Here, b is the vector of signal amplitude; K is the known
kernel matrix. When T, measurement is conducted,

Ky.j = exp(— ty/T;). When T;-T; measurement is conducted,

Kijmn = (1 -2 exp( - m) ) ®exp<
tensor product. n is corresponding noise.
In Eq. (5), fis the solution or spectra and must be non-negative.

Then, Eq. (5) can be converted into an optimization problem:

—Tt—f) and symbol ® means
2n

f =argmin|Kf — b5 s.t., Kf =b (6)
f>0

It is obvious that Eq. (6) is a non-negative least square solution
problem. In order to avoid over-fitting of the solution, I, regulari-
zation constraint is usually imposed on f:

f = argmin|[Kf —b|j3 + a|f|3 st Kf =b 7
f=0

Eq. (7) can be solved by using BRD or LM method as afore-
mentioned. In addition, [, regularization term can be modified by
using [; restraints to improve the sparsity of spectra but may result
in under-smoothness and produce artificial peaks. Therefore,
double-parameter regularization methods are proposed and sug-
gested to balance smoothness and sparsity of spectra (Berman et al.,
2013; Guo et al., 2018). However, it is generally considered that the
points in the spectra are independent of each other, leading to
irregular shape and artificial peaks of spectra, even though
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experiments are conducted with high SNRs. This situation will be
explained in details later.

In order to fully extract the effective information and eliminate
the redundant information of spectra with improved resolution and
accuracy, non-negative low-rank and sparsity restraints are added
into the objective function. Then Eq. (6) can be converted as fol-
lowed problem:

f= ar%mén\lFfll* + M lflly + Ao lIKF — bI3
>

st. Kf=b (8)

Here, 1; and A, are regularization parameters; | o ||« is the nu-
clear norm, which is the sum of singular value of a matrix; I is the
operator to convert a vector into a matrix. In 1D inversion problem,
I’ could be Hankel matrix operator (Qu et al., 2015). In 2D inversion
problem, I'f is 2D relaxation spectra. For example, f is a vector with
length of 2500, and I’f is the 2D spectra with size of 50*50. In Eq.
(8), the first term constrains the low-rank property of the spectra,
the second term constrains the sparsity of the spectra, and the third
term constrains the accuracy of the spectra and reflects the noise
disturbance of the solution. Therefore, the optimization problem is
converted into solving the low-rank and sparse 1D or 2D relaxation
spectra.

2.3. Algorithm description based on non-negative low-rank and
sparsity restraint

According to Eq. (8), optimized variable fis appeared in nuclear
norm term, [; norm term and residual norm term, simultaneously.
The objective function can not be directly solved so that ADMM can
be applied to convert objective function into three subproblems,
which can be solved independently (Qu et al., 2015; Lu et al., 2018).

To avoid the confusion of variable f in subproblems, auxiliary
variables H, h and e, and Lagrange multipliers X, X, and X3 are
introduced into objective function. Therefore, the problem of Eq. (8)
can be rewritten as a new form:

f= argjgnurfn* + M |lfll; + A2 lIKF — b3
st b=Kf +e, If=H, f=h (9)

With the augmented Lagrange function, Eq. (9) can be converted
into an optimization problem in a non-restraint form:

{H7h7 e} = argminy("h h7 e7X]7X27X37/'L)
= [H|l. + A1[|h]ly + 22]le]|3 + (X2, Tf — H) + (X3.f — h)
X 2
+(X1,bl(fe>+%<HFfH+ uz

+Hf—h+&
w

F

(10)

Here, <e,e> is inner product,  is the dual variable which is
acted as the step-size controller in each iteration. By alternatively
solving and updating variables H, h and e, ' (H,h,e, X1,X,, X3, 1)
will be optimized.

The optimization of three subproblems can be solved and iter-
atively updated as followed scheme:

X117

2
+Hb—Kf—e+
F

F

1. Fixing other variables and updating H:
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X512

H:argmin\|H|\*+HFf—H+ (11)

F

where, the solution of Eq. (11) is 0, (H + %) and 6O is the minimum
13

operator of nuclear norm, which can be obtained with singular
value thresholding (SVT) method (Cai et al., 2010).

2. Fixing other variables and updating h:

2

h=argminiq| h|; +Hf—h+% (12)

F

where, the solution of Eq. (12) is ‘Fh(<h + ’%)) and W is the
u

minimum operator of [y norm, which can be obtained with

shrinking thresholding (ST) method (Lin et al., 2010).

3. Fixing other variables and updating e:

2

e = argminl,|e|3 + Hb—l(ffe+)% (13)

F

where, the solution of Eq. (13) is Ql((b - Kf + ’%)) and Q is the
3

minimum operator of I, norm. Its approximate solution is

wx (b —Kf +’%>/(Az +4) (Zhuang et al., 2012).

4. Fixing other variables and updating f:

f= (KTK+21) [I(T(b—e+x1 /1) — (F*]x2 +X3) /,u—s—h+F’1H
(14)

where I'"! is the operator for converting 2D matrix into 1D vector.
In a summary, the workflow for solving equations with ADMM is
illustrated in Table 1.

3. Simulations
3.1. One-dimensional T, relaxation spectra

3.1.1. Model construction

The relaxation spectra are subject to the Gaussian distribution
(Prange and Song, 2009; Wang et al., 2017). In order to verify the
effectiveness of proposed method, synthetic echo data based on
Gaussian distribution or random walk of particles in digital rocks is
used as forward modeling for inversion process. For simplicity, we
conduct forward modeling based on Gaussian distribution to
construct raw echo data. The establishment of forward modeling
includes five steps: 1. using Gaussian function to determine the
location of peaks and the morphology of the fluid components; 2.
simulating pulse sequence parameters, such as echo spacing, echo
number and other acquisition parameters; 3. calculating the kernel
function of Laplace transformation matrix according to the acqui-
sition parameters and the discrete relaxation components; 4.
calculating the noiseless echo data according to the spectra
amplitude and kernel matrix, and then adding noise. Finally, the
inversion method can be verified with synthetic NMR echo data. In
this subsection, 1D T, inversion is analyzed at first.

For 1D inversion, we build two bimodal relaxation spectra with
the same fluid components but different relative content to simu-
late the bound water (BW) and movable oil (MO) in rock pores, as
demonstrated in Fig. 1. The relaxation time of BW is 8 ms and MO is
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Table 1
The proposed algorithm and workflow for the acquisition of optimal solutions with low-rank and sparsity restraint.

Optimization Algorithm based on Low-rank and Sparsity Restraint

Input: measured signal b; kernel matrix A; regularization parameter 1, A; step-size y; iteration number t.
Initialization: Tol ¢ = 1076;f, =hy =€y =X; =X3 = 0; H=X; = 0; gy = 0.01; ppex = 10°; ¢t = 0; & = 1.01.

1: while max([If - D' H2, |If — )2, b — Kf — el})>e do
2: Fixing other variables and updating H of (11) with SVT operator;
3: Fixing other variables and updating h of (12) with ST operator;
4: Fixing other variables and updating e of (13) with [, minimization operator;
5: Updating f with Eq. (14): f = (K"K +2I)[K"(b—e +X; /u) —(T' 'X5 +X3) /u+h+T"'H]
6: Updating Lagrange multipliers as followed:
Yieor =Yoo+ < (b-Kfq —erq)
Yorir =Yor e x (Fepr — T Heyq)
Yseo1 = Y3 +pe < (Frq —heea)
7: Updating u as followed:
Ber1 = MIN (Bmax, §4¢), Where

2
- { o, if max(|[f — | . If — I |Ib - KF — el?) <e

1, otherwise

8: Updating t =t+ 1;
9: end while
Output: optimal solution f.

150 ms. The total porosity is 10 p.u., and the relative content ratio Fig. 1(a)) and 2:3 for model 2 (as demonstrated in Fig. 1(b)),
between BW and MO is 3:2 for model 1 (as demonstrated in respectively. Fig. 1(c) and (d) are forwarding echo data from Fig. 1(a)

(a) o8 (b) o8
T, model 1 T, model 2
0.6 - 0.6
3 3
o o
g g
S 041 S 04 A
= =
a a
E =
< <
0.2 0.2 A
0 T T T T 0 T T T T
10~ 100 10! 102 10% 10 100 10! 102 10%
Tz, ms T, ms
(c) 12 (d) 12
Noisy echo data Noisy echo data
10 4 Noiseless echo data 10 Noiseless echo data
8 A 8 1
3 6 3 6
o %
o) [0}
°
S ¢ 5 4
= =
=3 =
£ 2 £ 2]
# G, ™ T :- e e h |
04 T = 04 4 o
25 —2 4
-4 T T T T -4 T T T T
0 100 200 300 400 500 0 100 200 300 400 500
Time, ms Time, ms

Fig. 1. Bimodal T, spectra based on Gaussian distribution and corresponding NMR signal response. (a) bimodal T, spectrum with MO dominated; (b) bimodal T, spectrum with CBW
dominated; (c) and (d) are NMR signals corresponding to (a) and (b), respectively.
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and Fig. 1(b) respectively. Considering the enough decay of echo
data, echo spacing TE is set as 0.2 ms and echo number is set as
2500.

3.1.2. Selection of regularization parameters

The selection of regularization parameters is important for
obtaining reliable and precise solutions. However, an optimal se-
lection for double parameters is very difficult. Therefore, we
conduct a global search for two regularization parameters and
observe the variation of root-mean-square error (RMSE) between
models and inversion results. Further works on the optimization of
double regularization parameters is undergoing. The interval of 1,
and 1, is set as [0.01 100] and 50 points are logarithmically
distributed in this interval. Considering model 1 as an instance,
synthetic echo data with different SNR of 100, 50, 20 and 10 is
constructed, respectively. The expression of RMSE is as follows:

S (1 () ~ (0 )’

_ i=1
RMSE = N

(15)

where, f (E) is the amplitude of the relaxation component in the
inverted spectra, and f(Ty;) is the amplitude of relaxation

SNR =100

(a)

(c)

A1
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component in the model.

The calculated RMSE after LRSR inversion process is demon-
strated in Fig. 2. With the decrease of SNR, the RMSE of the solution
gradually increases, which is reflected in the gradual expansion of
the isolines. When the SNR is high, the disturbance of noise to the
solution is small, leading to the relatively high value of A; and 4,. In
this situation, spectra can balance the sparsity and smoothness
while ensuring the precision and morphology. When SNR is lower
than 20, RMSE is gradually decreased. In this situation, A; and 4,
should be decreased, and A, should lower than A;. In order to
ensure the sparsity and smoothness, slightly sacrificing the preci-
sion of solutions is necessary, which will lead to the increment of
RMSE. The yellow dots in Fig. 2 represent the optimal values of
regularization parameters A; and 1,, leading to the lowest RMSE of
inversion results. It can be seen that, 4; and A, are within the in-
terval of [0.1 10] and the ratio of A, /4; is gradually decreased, with
the SNRs changed from 100 to 10. The optimal values of regulari-
zation parameters A; and A, are illustrated in Table 2.

In the followed works, we will adopt the optimal values of
regularization parameters in Table 2.

3.1.3. 1D inversion analysis
To verify the effectiveness of proposed method, inversion results
obtained with BRD and LSQR-TSVD methods are considered for the

SNR=50

(b)

22

(d)

Fig. 2. Variation of RMSE at different SNRs when regularization parameters changed. (a) SNR = 100; (b) SNR = 50; (c) SNR = 20; (d) SNR = 10. The yellow dot demonstrates the

minimum RMSE and points out the optimal regularization parameters.
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Table 2

Optimal values of regularization parameters for 1D LRSR inversion.
SNRs M X o /M
100 1.24 4.20 3.38
50 0.98 1.38 141
20 0.71 0.45 0.63
10 0.65 0.22 0.34

comparison. The RMSE, accumulated porosity and the BW/MO ratio
are compared. The S-curve method is adopted for the optimal
regularization selection of BRD inversion method. LSQR-TSVD is a
hybrid method based on the iteration idea, which has the ability
with desirable inversion speed and better resolution. The T, spectra
of model 1 and model 2 inverted by using BRD, LSQR-TSVD and
proposed LRSR methods are demonstrated in Figs. 3 and 4,
respectively.

It can be seen from Figs. 3 and 4 that different fluid components
can be clearly distinguished at different SNRs. However, the dif-
ference between three methods is obvious. At higher SNR
(SNR>50), the inverted spectra are very close to the forwarding
models, and high resolution and small RMSE are obtained. When
SNR is lower than 20, the inverted spectra are deviated from the
forwarding model with increased RMSE. In order to ensure the
stability of solutions and avoid artificial relaxation peaks, inverted
spectra of BRD method are tended to be smoother, leading to higher
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RMSE. The reason is that the selection of the optimal regularization
parameter reduces the condition number of the matrix, leading to
the smoothness. LSQR-TSVD method demonstrates good perfor-
mance for enhancing the resolution of spectra compared to BRD
method. In this method, an initial guess which is calculated by LSQR
and input into TSVD to be further solved. Whereas, LRSR demon-
strates the best performance due to the introduced low-rank and
sparsity restraint. It will enhance the relevance between adjoint
points, highlight the effective components and eliminate the arti-
facts in the spectra during inversion process. In other words, the
smoothness and stability can be ensured with low-rank restraint.
The resolution can be ensured with sparsity restraint. Quantitative
information of porosity, RMSE and BW/MO ratio at different SNRs
obtained with these three methods, are illustrated in Table 3. It is
indicated that LRSR method is superior than BRD and LSQR-TSVD
methods, from the aspects of porosity, RMSE, and fluid quantita-
tive identification.

In order to study the performance of LRSR method on noise
resistance, 1000 random simulations are conducted at different
SNRs. The T, spectra inverted by using LRSR method are compared
with that inverted by using BRD and LSQR-TSVD methods. For
simplicity, model 1 is used for the probability statistics of porosity,
RMSE and BW/MO ratio, which are demonstrated in Fig. 5. It is
shown that the inversion results obtained with LRSR method is
more close to the model, and have a higher probability distribution
around the pre-set values of the model (such as porosity and BW/
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Fig. 3. T, spectra inverted by using BRD, LSQR-TSVD and LRSR methods based on model 1 at different SNRs. (a) SNR = 100; (b) SNR = 50; (c) SNR = 20; (d) SNR = 10.
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Fig. 4. T, spectra inverted by using BRD, LSQR-TSVD and LRSR methods based on model 2 at different SNRs. (a) SNR = 100; (b) SNR = 50; (c) SNR = 20; (d) SNR = 10.

Table 3

Comparison of BRD, LSQR-TSVD and LRSR methods applied on model 1 and model 2 at different SNRs, when optimal regularization parameters selected.
Model 1 BRD LSQR-TSVD LRSR
SNRs 100 50 20 10 100 20 10 100 50 20 10
RMSE_1 0.019 0.033 0.043 0.045 0.018 0.0259 0.035 0.039 0.010 0.019 0.025 0.031
Porosity_1 10.335 10.146 10.430 10.662 10.090 10.082 10.344 10.479 10.142 10.070 10.163 10.306
BW/MO_1 1.590 1.582 1.613 1.825 1.548 1.561 1.581 1.811 1.490 1.491 1.534 1.492
Model 2 BRD LSQR-TSVD LRSR
SNRs 100 50 20 10 100 20 10 100 50 20 10
RMSE_2 0.015 0.021 0.032 0.050 0.015 0.015 0.025 0.041 0.007 0.013 0.022 0.037
Porosity_2 9.979 10.073 10.089 9.673 9.959 10.023 9.933 9.914 10.029 9.983 10.030 9.910
BW/MO_2 0.667 0.685 0.689 0.732 0.671 0.675 0.685 0.699 0.661 0.666 0.671 0.677

MO ratio). The dispersion of the probability distribution may result
from the noise disturbance and randomness. With the decrease of
SNR, the RMSE of inversion results using BRD and LSQR-TSVD
methods becomes larger, and the ability of fluid identification
and quantification also decreases. On the contrary, the LRSR
method maintains a relatively stable performance. Table 4 lists the
averaged values of 1000 random simulations at different SNRs for
BRD, LSQR-TSVD and LRSR methods. The 1D simulation results
demonstrate that LRSR method has better noise resistance and is
more accurate in porosity calculation and fluid quantitative
identification.

The time consumption and memory usage of BRD, LSQR-TSVD
and LRSR methods are compared as well. The processor of PC is
2.9 GHz Intel Core i7-10700, and memory storage is 32 GB. Simu-
lation software MATLAB 2021b is used for the computation. Table 5
illustrates the time consumption and memory usage of each
inversion method. For 1D NMR inversion, the operation time of
LRSR method is slightly larger than that of other methods but has
moderate memory usage. The inversion speed should be improved
in future work since it is important for real-time NMR logging. Next,
we will carry on numerical simulation and analysis of 2D T;-T,
spectra.
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0.05

0.10

Fig. 5. 1000 random simulations using BRD, LSQR-TSVD and LRSR methods at different SNRs, and model 1 is used as an example for probability statistics. (a)—(c) SNR = 100; (d)—(f)
SNR = 50; (g)—(i) SNR = 20; (j)—(I) SNR = 10.

Table 4

Comparison of inversion results obtained by using BRD, LSQR-TSVD and LRSR methods at different SNRs and corresponding averaged values of RMSE, porosity and BW/MO

ratio.
Model 1 BRD LSQR-TSVD LRSR
SNRs 100 50 20 10 100 50 20 10 100 50 20 10
RMSE_1 0.024 0.025 0.048 0.057 0.017 0.019 0.029 0.052 0.015 0.017 0.024 0.036
Porosity_1 10.078 10.127 10.208 10.617 10.009 10.022 10.128 10.386 9.981 9.954 9.906 9.841
BW/MO_1 1.561 1.579 1.628 1.736 1.518 1.532 1.583 1.680 1.511 1.496 1.476 1.450
Model 2 BRD LSQR-TSVD LRSR
SNRs 100 50 20 10 100 50 20 10 100 50 20 10
RMSE_2 0.020 0.022 0.0380 0.042 0.016 0.019 0.029 0.050 0.016 0.017 0.025 0.036
Porosity_2 10.066 10.128 10.185 10.318 10.008 10.055 10.180 10418 9.979 9.959 9.904 9.850
BW/MO_2 0.684 0.695 0.712 0.732 0.667 0.680 0.717 0.780 0.673 0.660 0.649 0.638
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Table 5

Time consumption and memory usage.
Name BRD LSQR-TSVD LRSR
Time, s 0.030 0.416 0.503
Memory, MB 3.003 5.895 4344

3.2. Two-dimensional T;-T, spectra

3.2.1. Model construction

For the forwarding model of 2D T;-T, relaxation spectra, three
fluid components are constructed, including bound water (BW),
movable oil (MO) and movable water (MW). The T; relaxation time
of three components is 5 ms, 30 ms, and 200 ms, respectively. The
T, relaxation time of three components is 4 ms, 25 ms, and 150 ms,
respectively. The Tq/T, ratio is within the interval of [1, 2]. For
simplicity, the total porosity of model is set as 12 p.u., and the
proportion of three components is set as 4 : 4: 4. Based on this
model, the acquisition parameters, polarization time TW is set as
[5000; 4000; 2000; 1000; 800; 500; 250; 125; 100; 50; 25; 15; 10;
8; 6; 5; 4; 2; 1; 0.1] ms, echo spacing TE is set as 0.2 ms and echo
number NE is set as 2500.

The T;-T, relaxation spectra and corresponding NMR signals
based on forwarding model and acquisition parameters are
demonstrated in Fig. 6(a) and (b), respectively. It can be seen from
Fig. 6 that the NMR echo data acquired by 2D T;-T; pulse sequence
is essentially a 1D time-domain signal, and the T;-T> relaxation
spectra is obtained by inverse Laplace transformation. The
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Table 7

Optimal values of regularization parameters for inverting 2D T;-T, correlation

spectra.
SNRs M Ao Ao /M
100 3.12 5.10 1.63
50 3.00 2.50 0.83
20 2.40 0.80 033
10 1.60 0.11 0.07

projection of T;-T, relaxation spectra along the T, direction is T,
spectrum, and the projection along the Ty direction is T1 spectrum.
Both T; and T, relaxation times jointly determine the characteris-
tics of 2D T1-T; relaxation spectra of the detected samples. In the 2D
spectra, three kinds of fluid components can be clearly identified,
and the area of the corresponding local peak is the absolute content
of the fluid component, which can be quantitatively calculated.

3.2.2. 2D inversion analysis

Different from 1D inversion, the amount of 2D NMR echo data is
largely increased, leading to an increment in acquisition time and a
serious reduction of data processing speed. By compiling pulse
sequence (Du et al., 2020) and data compression before inversion
process (Mitchell et al., 2012), the acquisition time can be effec-
tively reduced and the inversion speed may be increased. There-
fore, for 2D NMR echo data, we use the truncated singular value
compression (SVDc) method to compress the 2D echo data at first,
and then use the BRD and LRSR methods to invert the compressed

Noisy echo data
Noiseless echo data

-10 4

-15 T T T T

2000 4000 6000 8000 10000

Time, ms

Fig. 6. Forwarding model of T;-T, relaxation spectra and synthetic NMR signals. (a) T;-T; correlated spectra constructed from bound water (BW), movable oil (MO) and movable

water (MW); (b) synthetic echo data of three fluid components.

Table 6

Inversion results of 2D T;-T, data by using BRD, LSQR-TSVD and LRSR methods with different SNRs.
SNRs 100 50 20 10
BRD
RMSE (p.u.) 0.017 0.020 0.024 0.032
Porosity (p.u.) 12.24 12.33 12.46 12.94
BW:MO:MW 4.03:4.08:3.96 3.87:3.93:3.98 3.66:3.55:4.15 3.20:3.61:4.06
LSQR-TSVD
RMSE (p.u.) 0.015 0.021 0.025 0.028
Porosity (p.u.) 12.20 12.24 1241 12.78
BW:MO:MW 3.55:3.68:4.04 3.58:3.71:4.03 3.25:3.68:4.08 2.88:3.56:4.14
LRSR
RMSE (p.u.) 0.012 0.016 0.018 0.024
Porosity (p.u.) 12.07 12.12 12.21 12.51
BW:MO:MW 3.97:4.01:3.98 3.89:4.05:4.08 3.76:4.03:4.11 3.62:4.14:4.08
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Fig. 7. T;-T, relaxation spectra inverted by using different methods at different SNRs. (a1)~(d1) demonstrate the T;-T, spectra inverted by using the BRD method. (a2)~(d2)
demonstrate the T;-T, spectra inverted by using the LSQR-TSVD method. (a3)~(d3) demonstrate the T;-T, spectra inverted by using the LRSR method.

echo data. For LSQR-TSVD method, window average (WA) method
is used for data compression to accelerate inversion process (Dunn
and LaTorraca, 1999). Each echo train is compressed to 50 points for
inversion.

For 2D inversion, the range of T; and T, relaxation times is set
within the interval of [0.1, 10,000] ms and 50 points are logarith-
mically distributed in each relaxation time dimension. The inver-
sion results of 2D T;-T, relaxation spectra under different SNRs are
considered and compared to that inverted by using BRD and LSQR-
TSVD methods. The selection of regularization parameters is listed
in Table 7. With the decrease of SNR, the ratio of 1,/ A; gradually
reduced, reflecting that the RMSE increases with the increased
noise level. It is very similar with the conclusion from 1D inversion
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analysis. The T;-T, relaxation spectra obtained with BRD, LSQR-
TSVD and LRSR methods are demonstrated in Fig. 7, respectively.
It can be seen that the resolution of the inverted spectra grad-
ually decreases with the decrease of SNR, compared to the for-
warding model. For the spectra obtained with BRD method, each
spectral peak is gradually integrated with the decrease of SNR,
which is difficult to separate. The spectra obtained from LSQR-TSVD
method demonstrate the stability at different SNRs, which is
benefit from the LSQR method. However, different with 1D simu-
lation cases, inversion results by using LSQR-TSVD method seem to
be affected by the introduction of T; dimension. For BRD and LSQR-
TSVD methods, the morphology of different fluid components is
relatively irregular, leading to aliasing regions in 2D spectra at
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Fig. 8. T;-T, and T, spectra of copper sulfate solution obtained by using BRD, LSQR-TSVD and LRSR methods. (a) T;-T, spectra obtained with the BRD method. (b) T;-T, spectra
obtained with the LSQR-TSVD method. (c) T;-T, spectra obtained with the LRSR method. (d) T, spectrum obtained with BRD, LSQR-TSVD and LRSR methods, respectively.

lower SNRs, even though the peaks in the projection of each T
relaxation dimension is identified. For the spectra obtained by LRSR
method, the relaxation peaks of different components are sym-
metrical and highly resolved. It means that the regions of different
fluid components can be fully divided, and it is benefit for quanti-
tatively calculating the content of different fluid components. The
porosity, RMSE and fluid component content calculated by using
BRD, LSQR-TSVD and LRSR methods at different SNRs are listed and
demonstrated in Table 6, respectively. The results demonstrate that
LRSR method has the advantage to conduct 2D inversion, especially
for fluid quantitative identification. The porosity, RMSE and fluid
component content are more close to the model. It not only ensures
the resolution, but ensures the morphology of the spectra, resulting
in improved ability of fluid identification.

4. Experiments and results

Next, the NMR experiments are conducted on free fluids and
rock core samples to validate the practical application effects and
performance of proposed LRSR method. The tested samples include
copper sulfate solution of 10 g, oil-water mixture of 11 g, and
artificial sandstone samples. The 1D T, and 2D T;-T, experiments
are conducted on LIME-MRI-2D 2 MHz Core Analyzer (Beijing
Limecho Technology Co., Ltd). The 1D measurements are conducted
by using CPMG pulse sequence, and the 2D measurements are
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conducted by using IR-CPMG pulse sequence. The amplitude of
NMR signals and inverted spectra uses microvolt (uV) as unit. In
theory, the total area of the spectra is equal to the amplitude of the
initial echo measured by NMR instruments.

4.1. Copper sulfate solution

The 1D and 2D inversion results of copper sulfate solution are
demonstrated in Fig. 8. For 1D T, experiments, the echo spacing is
0.2 ms, echo number is 3000 and signal average is 8 times. For 2D
T:1-T, experiments, the waiting time is set as 25 steps, which are
logarithmically sampled within the interval from 0.1 ms to 5 s. The
size of Tq-T, spectra is 80*80.

Fig. 8(a)—(c) are the 2D T;-T, inversion results obtained with
BRD, LSQR-TSVD and LRSR method, respectively. Fig. 8(d) demon-
strates the corresponding T, spectra. It can be seen from Fig. 8 that
BRD, LSQR-TSVD and LRSR methods have good consistency when
free fluid component is measured, and T, value of copper sulfate
solution is about 10 ms. The SNR is high enough for obtaining high
quality spectra with desirable resolution and accuracy. For 2D
inversion results, both methods also have good consistency. How-
ever, LRSR method demonstrates more symmetrical and regular
morphology of spectral peak due to the low-rank and sparsity re-
straints. On the aspect of calculation precision, the integral area of
T;-T, relaxation spectra obtained by BRD method is 12.236 pV and
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LSQR-TSVD method is 12.172 pV, while LRSR method is 11.987 pV.
Under the condition of sufficient polarization, the signal amplitude
measured by NMR instrument is about 11.556 pV. It is validated that
the processing result of LRSR is more precise.

4.2. Oil-water mixture

For oil-water mixture, only 2D inversion results are demon-
strated and 1D spectra can be reflected by the projections along
with T; and T> dimensions. The 2D inversion results of oil-water
mixture are demonstrated in Fig. 9. The acquisition parameters of
T1-T, pulse sequence are the same as that used for the measure-
ment of copper sulfate solution, except for the echo number, which
is set as 8000 for the sufficient decay of longer relaxation compo-
nents. Fig. 9(a)—(c) are the inversion results obtained with BRD,
LSQR-TSVD and LRSR method, respectively. It is shown that these
three methods can better distinguish fluid components with
different properties. However, the T;-T spectra obtained with BRD
method reveal a tail along the line of T;/T, of 1 as well as that ob-
tained with LSQR-TSVD method. In addition, the LSQR-TSVD
method demonstrates less smoothness. In this case, if the region
of fluid component is not separated accurately, it will cause the
deviation in the calculation of fluid component content, which is
illustrated in the simulation part. In addition, accurate fluid iden-
tification needs the sparsity of spectral peaks, which can result in
artificial peaks of a few high values due to the noise, and LRSR
method may solve this issue. The morphology of spectral peaks is
regular and will not produce strong tail morphology, which im-
proves the accuracy of fluid identification. Under the condition of
sufficient polarization, the amplitude of T;-T> spectra area obtained
with BRD, LSQR-TSVD and LRSR method is 14.133 pV, 14.117 uV and
13.985 pV, respectively. The signal amplitude measured by the in-
strument is 13.886 uV. It can be seen that the LRSR is more precise
for 2D NMR data processing.

4.3. Rock cores

At last, two artificial sandstone samples are tested. The inversion
results of two samples are demonstrated in Figs. 10 and 11.
Fig. 10(a)—(d) demonstrate the T;-T, and T» spectra of sandstone 1,
and Fig. 11(a)-(d) demonstrate the T;-T> and T, spectra of sandstone
2. These samples have the length of 5 cm and diameter of 2.54 cm
and possess different properties. Sample 1 contains chlorite of 10%
and its permeability is 100 mD, which is saturated with NaCl so-
lution of 10,000 ppm. The weight porosity of sample 1 is 17.02%.
Sample 2 contains illite of 10% and its permeability is 12 mD, which
is flooded with #68 oil for one day after the saturation process with
NaCl solution of 10,000 ppm. The weight porosity of sample 2 is
22.55%.

In T;-T, experiments, the echo spacing is 0.2 ms, echo number is
4000, and the waiting time is set as 30 steps, which are logarith-
mically sampled within the interval from 0.1 ms to 3 s. The signal
average for sandstone 1 is 16 and for sandstone 2 is 32. In addition,
the size of T;-T» spectra is 80*80. The T, experiments are also
conducted as the comparison group, the size of T, spectrum is 80.
Echo number is 5000. Echo spacing is 0.2 ms. Waiting time is 3 s.
The signal averages for sample 1 is 16 and for sample 2 is 32. In this
subsection, only fluid-identification capability of proposed method
is discussed.

Fig. 10 demonstrates that there are three fluid components in
sandstone sample 1, as three peaks pointed out. Due to the pres-
ence of clay mineral like chlorite in sample 1, the left peak (about
2.4 ms) indicates that there exists clay bound water. The middle
(about 24 ms) and right peak (about 100 ms) is the capillary bound
water and free water, respectively. In the conventional sandstone,
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Fig. 9. 2D Inversion results of oil-water mixture. (a) T;-T, spectra obtained with the
BRD method. (b) T;-T; spectra obtained with the LSQR-TSVD method. (c) T;-T, spectra
obtained with the LRSR method.

an empirical knowledge can be accepted that T, value less than
33 ms indicates the capillary bound water, and T, value larger than
33 ms indicates the free water (Coates et al., 1999). The T, spectrum
also validate the accuracy of T;-T, spectra. The projected T, spec-
trum of each T;-T; spectra is in agreement with its corresponding T
spectrum. However, due to the limitation of resolution, BRD
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Fig. 10. 2D T;-T, spectra and 1D T, spectra of synthetic sandstone sample 1. (a) T;-T, spectra inverted by using the BRD method. (b) T;-T, spectra inverted by using the LSQR-TSVD
method. (c) T;-T; spectra inverted by using the LRSR method. (d) T, spectrum inverted by using BRD, LSQR-TSVD and LRSR methods, respectively.

(Fig. 10(a)) and LSQR-TSVD (Fig. 10(b)) methods can not clearly
distinguish those fluid components with different occurrence state
on corresponding T;-T> spectra. Due to the lack of regularization
term, T, spectrum inverted by LSQR-TSVD method can not separate
the capillary water and free water. In addition, artificial peaks are
appeared, leading to overestimation of the amplitude, as illustrated
in Table 8. It means that the porosity will be overestimated if the
signal amplitude has been calibrated into porosity. Fig. 10(c) dem-
onstrates the inversion results obtained with LRSR method. It is
clearly observed that the three peaks are highlighted and fluid
components are distinguished in vivid. Because the features of 2D
T1-T, relaxation spectra are fully extracted with LRSR method,
different water components can be determined accurately.

Fig. 11 also demonstrates that there are three fluid components
in sandstone sample 2, as three peaks pointed out. In the T;-T;
spectra, the T1/T; is around 2, which is not in agreement with the
commonly used values for water or oil identification. This may be
resulted from the magnetic impurity in this artificial sandstone
sample, leading to the relaxation spectra shifted into the short
relaxation times. For fluid identification, a first look can be focused
on Fig. 11(d). Due to the flooding process, the water in the larger
pores is flooded out by #68 oil. The left peak indicates the clay
bound water (about 1.6 ms) due to the presence of illite. The middle
peak (about 19 ms) and right peak (about 60 ms) in Fig. 11(d) can be
clearly distinguished using BRD and LRSR methods except for using
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LSQR-TSVD method, since LSQR-TSVD method is lack of sparsity.
The sandstone is water-wet so that the #68 oil is bulk relaxation
time dominated in the large pores, which may result in two peaks
for the indication of water and #68 oil. For T;-T, spectra, the BRD
method demonstrates the low resolution due to the norm
smoothness (as shown in Fig. 11(a)). In contrast, the LRSR method
demonstrates good results (as shown in Fig. 11(c)). The LRSR
method can improve the resolution of spectra while make spectra
much more vivid without artificial peaks disturbed as possible. In
addition, the morphology of inverted spectra (relaxation peaks) is
very symmetrical and regular, which is benefit for the quantitative
fluid-identification and obtaining more precise results. In a sum-
mary, the calculated integral amplitude of both T;-T, and T, spectra
area by using the three methods are compared in Table 8. It can be
seen that the LRSR method is more precise for 1D and 2D NMR data
processing.

5. Conclusions

The NMR relaxation spectra with high quality and resolution are
very important for the qualitative analysis and evaluation of the
detected samples. In this paper, a novel method is proposed to
effectively improve the resolution and accuracy of 1D and 2D NMR
relaxation spectra. The effectiveness and robustness of the pro-
posed method are verified by numerical simulations and practical
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Fig. 11. 2D T;-T, spectra and 1D T, spectra of synthetic sandstone sample 2. (a) T;-T, spectra inverted by using the BRD method. (b) T;-T, spectra inverted by using the LSQR-TSVD
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Table 8
Comparison of the integral amplitude of T;-T, and T, spectra area, and the NMR
measurement.

Label BRD, uV LSQR-TSVD, uV LRSR, uV Measurement, uV
T1-T, Inversion

Sample 1 10.489 10.168 10.139 9.782

Sample 2 22.056 21.671 21.438 20.168

T, Inversion

Sample 1 9.953 9.916 9.874 9.782

Sample 2 21.303 21.271 21.012 20.168

NMR experiments. Here are the conclusions:

(1) The proposed method is based on low-rank and sparsity
restraint, which can fully extract the characteristics of the
relaxation spectra with low-rank property and improve the
resolution with high sparsity. The region of different fluid
components can be more clearly separated and distin-
guished, leading to better application effects of fluid identi-
fication and quantification.

(2) The proposed method also has the performance with good
noise resistance. The accuracy of spectra can help to improve
the precision of physical parameters at low SNRs.
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Compared with conventional methods, the LRSR method has the
potential to become a general inversion method, which can be
applied to NMR relaxation data processing and quantitative anal-
ysis. It may play an important role in NMR data processing and
interpretation applications, especially in the scenarios like uncon-
ventional and complex oil and gas reservoirs. Further NMR petro-
physical studies based on the LRSR method will carried on in the
future.
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