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a b s t r a c t

Vertical height growthof hydraulic fractures (HFs) can unexpectedly penetrate a stratigraphic interface and
propagate into neighboring layers, thereby resulting in low gas-production efficiency and high risk of
groundwater contamination or fault reactivation. Understanding of hydraulic fracture behavior at the
interface is of pivotal importance for the successful development of layered reservoirs. In this paper, a two-
dimensional analytical model was developed to examine HF penetration and termination behavior at an
orthogonal interface between two dissimilar materials. This model involves changes in the stress singu-
larity ahead of the HF tip, which may alter at the formation interface due to material heterogeneity. Three
critical stress conditions were considered to assess possible fracture behavior (i.e., crossing, slippage, and
opening) at the interface. Then, this model was verified by comparing its theoretical predictions to nu-
merical simulations and three independent experiments. Good agreement with the simulation results and
experimental data was observed, which shows the validity and reliability of this model. Finally, a para-
metric study was conducted to investigate the effects of key formation parameters (elastic modulus,
Poisson's ratio, and fracture toughness) between adjacent layers. These results indicate that the variation in
the introduced parameters can limit or promote vertical HF growth by redistributing the induced normal
and shear stresses at the interface. Among the three studied parameters, Poisson's ratio has the least in-
fluence on the formation interface.When the fracture toughness and elasticmodulus of the bounding layer
are larger than those of the pay zone layer, the influence of fracture toughness will dominate the HF
behavior at the interface; otherwise, the HF behavior will more likely be influenced by elastic modulus.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction an HF progressively approaches a stratigraphic interface, the stress
Unconventional hydrocarbon reservoirs, such as tight sand-
stones and shales, are characterized by ultralow permeability and
porosity (Zhao et al., 2018, 2020). To effectively develop these res-
ervoirs, inducing fractures by fluid injection, known as hydraulic
fracturing, has become an essential technique for enhancing reser-
voir permeability and stimulating gas production. Hydraulic frac-
tures (hereafter called HF) are created after massive high-pressure
fluid is injected into the formation rocks. Owing to the difference in
stress conditions, rock properties, fracturing fluid properties, and
interfacial strength between adjacent strata (Guo et al., 2017; Tang
et al., 2019; Zhao et al., 2021a), the HF propagation will inevitably
be disturbed and complicated on a wide variety of length scales. As
eering, Guizhou University,
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induced by the HF-tip singularity will project a considerable stress
component at the interface, which may cause the interface to
deform and fail (Lu et al., 2015; van Eekelen,1982;Wang et al., 2015;
Zhao et al., 2021b). The deformation and failure of the interface
results in unexpected vertical fractures penetrating the interface
and growing into neighboring strata, thereby reducing the exploi-
tation efficiency and increasing the risk of water contamination and
fault reactivation (Jabbari et al., 2017; Rodriguez et al., 2020; Zhang
et al., 2020a). For better HF height containment, it is necessary to
understand the stress field and stability of the formation interfaces
in the vicinity of a propagating HF.

Prediction and containment of HF height growth is a critical
issue in designing safe and economical hydraulic fracturing prac-
tices (Gao and Ghassemi, 2020; Weng et al., 2018; Zhang and
Jeffrey, 2008). The initial HF propagation follows the least resis-
tance principle and moves along its mechanically preferential
propagation path (Tan et al., 2017; Yin et al., 2020). In the presence
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List of symbols

C Cohesion of the interface
E1 Elastic modulus of the bounding layer at the HF

(Formation 1)
E2 Elastic modulus of the pay zone layer at the HF

(Formation 2)
f Friction coefficient of the interface
HF Hydraulic fracture
K1 Opening (Mode I) stress intensity factor of HF tip
K2 Shearing (Mode II) stress intensity factor of HF tip
KIC1 Fracture toughness of the bounding layer of the HF

(Formation 1)
PHF Fluid pressure inside the HF
rc Critical radius of the nonlinear zone ahead of the HF

tip
T0 Tensile strength of the rock in front of the HF tip
uri Radial displacement in the ith zone
mj Shear modulus of the rock in the jth zone (j ¼ 1, 2, 3)

v1 Poisson's ratio of the bounding layer at the HF
(Formation 1)

v2 Poisson's ratio of pay zone layer at the HF (Formation
2)

vqi Circumferential displacement in the ith zone
xcritical Horizontal distance away from the HF tip on the x-

axis
l Dimensionless eigenvalue of the interface
s1 Maximum principal stress at the critical position

(xcritical)
sh Horizontal in-situ stress
sN Total normal stress acting on the interface
sr Radial stress component
sv Vertical in-situ stress
sq Circumferential stress component near the interface
t Total shear stress acting on the interface
trq Shear stress component on the interface induced by

HF tip singularity
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of a stratigraphic interface between different rock materials, the HF
can penetrate the interface or be terminated by dilation and slip-
page at the interface, which has been previously demonstrated by
field observations (Fisher and Warpinski, 2012; Warpinski, 2011)
and laboratory experiments (Cheng et al., 2015; Zou et al., 2017).

To clarify the vertical propagation mechanism of the HF, many
scholars have undertaken numerous experiment and simulation
works on how a stratigraphic interface affects the vertical HF
propagation behavior (Simonson et al., 1978; Warpinski et al., 1982;
Zhao et al., 2022a; Zhang et al., 2017a). Through analyzing the stress
intensity factor at the crack tip, Simonson et al. (1978) discussed the
effect of material properties, in-situ stress and hydrostatic pressure
gradients on vertical HF growth and found that an HF could easily
break into the bounding layers provided that the stiffness of the pay
zone was higher than that of the adjacent bounding layers. Other-
wise, the HF was contained inside the pay zone. Warpinski et al.
(1982) conducted mine-back experiments to explore the domi-
nant factors that controlled the growth of HF height. The results
revealed that the heterogeneity in elastic properties between the
reservoir rock and the bounding formation had little effect on the
large-scale HF propagation. On the other hand, the steep gradients
and discontinuities in the magnitude of the minimum in-situ stress
acted as barriers for HF growth. This phenomenon has been
confirmed through both numerical modeling and laboratory ex-
periments (Fung et al., 1987; Tan et al., 2019; Zhang et al., 2019).
Therefore, the in-situ stress contrast between adjoining layers is
recognized as the dominant factor affecting fracture height growth
in most hydraulic fracturing scenarios.

Moreover, the elastic modulus contrast between the reservoir
rock and the barrier layer has also been identified with great
importance in influencing HF height containment when encoun-
tering a stratigraphic interface (Cook and Erdogan, 1972). Gu and
Siebrits (2008) demonstrated that high modulus in the reservoir
layer (pay zone) was adverse to HF height containment, particularly
when the horizontal in-situ stress differences were much greater
than the net fluid pressure. This result could be attributable to the
relation between the net fluid pressure and the layer's elastic
modulus: the higher elastic modulus of a layer generates a more
significant net fluid pressure within the HF, which promotes HF
propagation in the vertical direction (Smith et al., 2001). After
analyzing the real-time HF growth based on fracture-mapping
technology, Fisher and Warpinski (2012) reported that high
2811
modulus contrasts restricted fluid flowand had a pronounced effect
on the increase of fracture width. Zhuang et al. (2020) simulated HF
height propagation in naturally-layeredmedia using the phase-field
method, which indicated that the HF penetrated or deflected in a
soft-to-stiff formation configuration, while only penetration was
observed in a stiff-to-soft formation configuration. In this regard, the
effect of the elastic modulus on the HF height growth becomes
somewhat complex. The restrictive effect of low-modulus layers
surrounding a higher-modulus pay zone on the HF height can be
radically attributed to the lower stress-intensity factor at the inter-
face. However, Xing et al. (2018) experimentally confirmed that
relatively large fracture toughness of the bounding layer can also
achieve the same outcome. In line with Thiercelin et al. (1989) and
Gu and Siebrits (2008), a significant fracture toughness contrast in
adjacent layers induced a high pressure and restricted HF height
growth. Therefore, it is necessary to separately consider the effects
of fracture toughness and elastic modulus on HF growth to obtain a
fundamental understanding of HF behavior at stratigraphic in-
terfaces. In addition to the elastic modulus and fracture toughness,
Poisson's ratio also influences the vertical propagation of the HF
height. Through field monitoring, Labudovic (1984) found that HFs
could easily cross an interface when the Poisson's ratio of the
bounding layer was lower than that of the pay zone. However,
reliable predictions of HF propagation and containment behavior in
layered formations are still scarce, and whether the HF height is
contained by interface slippage or opening is also unclear, which
merits further investigation.

In general, previous efforts have attempted to elucidate how the
HF propagates when encountering an interface in layered forma-
tions. Although the in-situ stress has been ranked as a crucial
parameter dominating fracture height growth in previous works,
these studies have yet to reach a consensus on the influence of
different material properties (elastic modulus, Poisson's ratio, and
fracture toughness) on the HF behavior at the interface. Further-
more, current works are increasingly considering as many factors as
possible (fluid viscosity, environmental temperature, flow rate,
etc.), but few studies have concentrated on the variation in the
stress singularity at the HF tip. According to Warpinski et al. (1982)
and Yue et al. (2020), the nature (�1/2) of HF-tip stress singularities
in a homogenous medium will change as the HF reaches the
interface, which may play a crucial role in the subsequent disrup-
tion of the HF behavior. Therefore, predicting vertical HF
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propagation behavior at a stratigraphic interface remains an open
research topic, implying that new insights should be provided to
conduct further research.

In this study, a new interface model of a composite rock mass
considering changes in the stress singularity at the HF tip is devel-
oped to predict subsequent HF behavior (termination or penetra-
tion) at the interface. This model is validated by comparing the
results of the presented model to numerical simulations and pre-
viously published experimental observations. In addition, through
parametric sensitivity analysis, the effects of the elastic modulus,
Poisson's ratio, and fracture toughness are separately discussed,
which further verifies the reliability of the presented model.
Fig. 1. Schematic diagram of interface model of the composite rock mass.
2. Problem formulation

2.1. Interface model of composite rock mass

As Fig. 1 shows, a plane strain interface model of a linear elastic
composite rock mass is constructed with an HF (blue semi ellipse)
orthogonally encountering an unbounded frictional interface (red
line). The so-called unbounded frictional interface refers to an
interface with infinite length and obeys a linear friction law (or
more precisely Mohr-Coulomb criterion) in line with Renshaw and
Pollard (1995). The vertical direction corresponds to the major
growth orientation of HFs, as is currently observed in actual hy-
draulic fracturing processes (Flewelling et al., 2013; Zhang et al.,
2017b). The initial stress field is dominated by far-field in-situ
stress components sv and sh, parallel and perpendicular to the HF
in the Oxy coordinate system, respectively. For convenience, a polar
coordinate system is additionally established with the HF tip as the
origin O and the y-axis as the polar axis. Formation 1 and Formation
2 correspond to two different types of strata. Specifically, Formation
1 is the bounding layer that denotes the target formation of the
propagating HF, and Formation 2 represents the pay-zone layer that
initially contains the propagating HF. To evaluate the stress field
around the HF tip, this model is divided into three zones (Zone 1,
Zone 2, and Zone 3 as shown in Fig. 1) by the stratigraphic interface
and the HF. The stratigraphic interface between Formation 1 and
Formation 2 is assumed to be a thin and firm interlayer with friction
and cohesion. The model is assumed to be stable until the HF rea-
ches the interface (the approaching process is neglected).
2.2. Analytical solution of the stress on the stratigraphic interface

According to interface fracture mechanics (Keller et al., 2010),
complex variable functions are often adopted to calculate the stress
field ahead of the HF tip when a crack extends towards a strati-
graphic interface. In polar coordinates, the stress can be expressed
by Goursat's formula as (Greengard et al., 1996)

sq þ itrq ¼ 40 þ 40 þ e2iq½z400 þ j0�
sr � itrq ¼ 40 þ 40 � e2iq½z400 þ j0� (1)

where 4 and j are Goursat functions; q is the polar angle relative to
the positive y-axis; sr represents the radial stress component; sq is
the circumferential stress component; and trq denotes the shear
(
sqj þ itrqj ¼ rl�1

h�
Aj þ Bj

�
l2eiðl�1Þq þ �Aj þ Bj

�
le�iðl�1Þq þ �Cj þ Dj

2mj
�
sqj þ itrqj

� ¼ rl
h�
Aj þ Bj

�
kje

iðl�1Þq � �Aj þ Bj
�
le�iðl�1Þq � �Cj þ
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stress component, as shown in Fig. 1.
Here, we assume the Goursat's stress functions of the different

zones in Fig. 1 to be

4j ¼Ajz
l þ Bjz

l; jj ¼ Cjz
l þ Djz

l; j ¼ 1; 2; 3 (2)

where l is the interface eigenvalue, which is essentially an unde-
termined coefficient relevant to the interface geometry and the
mechanical properties of the formation medium. This parameter
also represents the principal stress (or displacement) distribution
characteristics (Keller et al., 2010). z is a complex number related to
spatial positions; Aj, Bj, Cj and Dj are undetermined coefficients, and
the subscript j ¼ 1, 2, 3 correspond to Zone 1, Zone 2 and Zone 3,
respectively.

Taking z ¼ reiq (i ¼
ffiffiffiffiffiffiffi
�1

p
) and combining Eqs. (1) and (2), we

obtain the stress field of different zones:

8>>>><
>>>>:

sqj þ itrqj ¼ rl�1
h
Ajl

2eiðl�1Þq þ Bjle
�iðl�1Þq þ Cjle

iðlþ1Þq
i

þrl�1
h
Bjl

2
eiðl�1Þq þ Ajle

�iðl�1Þq þ Djle
iðlþ1Þq

i
2mj
�
sqj þ itrqj

� ¼ rl
h
Ajkje

iðl�1Þq � Bjle
�iðl�1Þq � Dje

�iðlþ1Þq
i

þrl
h
Bjkje

iðl�1Þq � Ajle
�iðl�1Þq � Cje

�iðlþ1Þq
i

(3)

where mj is the rock's shear modulus in the jth zone and can be
expressed by the corresponding elastic modulus (Ej) and Poisson's

ratio (vj) via mj ¼ Ej
2ð1þvjÞ; j ¼ 1; 2; 3; and kj equals 3� 4vj for the

plane strain problems according to Dundurs (1967).
According to Ham and Kwon (2020), l is real. Therefore, Eq. (3)

can alternatively be presented as
�
leiðlþ1Þq

i
Dj
�
e�iðlþ1Þq

i (4)
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Regarding the composite rock mass, the mechanical continuity
condition of the stratigraphic interface between two isotropic and
elastic formations should be

ðx<0Þ

8>><
>>:

ur1
�
r;
p
2

�
¼ ur2

�
r;
p
2

�
; vq1

�
r;
p
2

�
¼ vq2

�
r;
p
2

�
sq1

�
r;
p
2

�
¼ sq2

�
r;
p
2

�
; trq1

�
r;
p
2

�
¼ trq2

�
r;
p
2

�

ðx>0Þ

8>><
>>:

ur1
�
r;�p

2

�
¼ ur3

�
r;�p

2

�
; vq1

�
r;�p

2

�
¼ vq3

�
r;�p

2

�
sq1

�
r;�p

2

�
¼ sq3

�
r;�p

2

�
; trq1

�
r;�p

2

�
¼ trq3

�
r;�p

2

�
(5)

where ±p
2 corresponds to the polar angle q; urj represents the radial

displacement in the jth zone; and vqj represents the circumferential
displacement in the jth zone.

The stress boundary conditions on the HF are

�
sq2ðr;pÞ ¼ 0; trq2ðr;pÞ ¼ 0
sq3ðr;�pÞ ¼ 0; trq3ðr;�pÞ ¼ 0 (6)

Note that the energy consumption associated with viscous drags
of fluid flow within the HF is neglected during the HF propagation
process, and a uniformly pressurized HF with null (fluid) pressure
gradient (Adachi, 2001) is focused on. In addition, according to
Renshaw and Pollard (1995) and Detournay (2004), a fluid lag is
expected behind the HF tip and usually remains exponentially
small for a large dimensionless toughness. Thus, the fluid lag is
assumed to be insignificant under current hydraulic fracturing
conditions.

Substituting Eq. (4) into Eqs. (5) and (6), we can obtain

�
A1lþ B1e

�iðl�1Þp þ C1e
ip ¼ A2lþ B2e

�iðl�1Þp þ C2e
ip

B1lþ A1e
�iðl�1Þp þ D1e

ip ¼ B2lþ A2e
�iðl�1Þp þ D2e

ip (6a)

�GhA1k1�B1le
�iðl�1Þp�D1e

�ilp
i
¼A2k2�B2le

�iðl�1Þp�D2e
�ilp

G
h
B1k1�A1le

�iðl�1Þp�C1e
�ilp

i
¼B2k2�A2le

�iðl�1Þp�C2e
�ilp

(6b)

�
A1lþ B1e

iðl�1Þp þ C1e
�ip ¼ A3lþ B3e

iðl�1Þp þ C3e
�ip

B1lþ A1e
iðl�1Þp þ D1e

�ip ¼ B3lþ A3e
iðl�1Þp þ D3e

�ip (6c)

�G
h
A1k1 � B1le

iðl�1Þp � D1e
ilp
i
¼ A3k2 � B3le

iðl�1Þp � D3e
ilp

G
h
B1k1 � A1le

iðl�1Þp � C1e
ilp
i
¼ B3k2 � A3le

iðl�1Þp � C3e
ilp

(6d)

�
A2lþ B2e

�2ilp þ C2 ¼ 0
B2lþ A2e

�2ilp þ D2 ¼ 0
(6e)

�
A3lþ B3e

2ilp þ C3 ¼ 0
B3lþ A3e

2ilp þ D3 ¼ 0
(6f)

where ki ¼ 3� 4vi (vi is the Poisson's ratio of Formation i, i ¼ 1, 2)
for the plane strain problem.

Combining Eqs. (6a)-(6f), after a series of parameter re-
placements and simplifications, as shown in Appendix A, a reduced
formula of l is finally obtained:
2813
aþ b2 þ
�
1� b2

�
coslp

2l2
¼ ð1� bÞða� bÞ (7)

where a and b are Dundurs' parameters named after Dundurs
(1967) and subsequently redefined by Bogy (1968) as

8>>><
>>>:

a ¼ ðk2 þ 1Þ � Gðk1 þ 1Þ
ðk2 þ 1Þ þ Gðk1 þ 1Þ ¼

m1ðk2 þ 1Þ � m2ðk1 þ 1Þ
m1ðk2 þ 1Þ þ m2ðk1 þ 1Þ

b ¼ ðk2 � 1Þ � Gðk1 � 1Þ
ðk2 þ 1Þ þ Gðk1 þ 1Þ ¼

m1ðk2 � 1Þ � m2ðk1 � 1Þ
m1ðk2 þ 1Þ þ m2ðk1 þ 1Þ

(8)

Note that m1 and m2 correspond to the shear modulus of For-
mation 1 and Formation 2, respectively.

Similarly, after some form transformations of Eqs. (6a)-(6f), as
detailed in Appendix B, the induced stress components applied on
the stratigraphic interface can be derived

sq1 þ itrq1 ¼
rl�1e

iðl�1Þp
2

ðlþ bÞ2 � ð1þ cÞð1þ cÞ(
K
h
l2 � b2 þ ð1þ cÞe�ilp þ cð1þ cÞ

i
þK
h
� ðlþ bÞe�ilp � lð1þ 2cÞ þ b

i
) (9)

where K is the stress intensity factor of the HF tip; b and c are the
dimensionless intermediate parameters, and their expressions (i.e.,
Eqs. (B.11), (B.7), and (B.8)) can be found in Appendix B.

If the elastic modulus Ei and Poisson's ratio vi of the bounding
and pay zone layers are given, a and b can be determined by Eq. (8).
Then, combining Eq. (7), the interface eigenvalue l can be obtained.
After substituting l into Eqs. (B.7) and (B.8) and taking the stress
intensity factor as mode I fracture toughness (critical stress in-
tensity factor), the stress component on the interface (Eq. (9)) can
be derived. Considering the effect of the remote in-situ stress field,
we can further obtain the total normal and shear stresses on the
stratigraphic interface:

sN ¼ sq1 þ sn; t ¼ trq1 (10)

where sN is the total normal stress (that acts along the y-direction);
and t is the shear stress resolved on the interface (that acts along
the x-direction).

2.3. Critical stress conditions for HF behavior

The singular stress field near the HF tip is also quantitatively
investigated (Warpinski et al., 1982). A quantitative parameter,
stress intensity factor, is adopted to characterize the singularity at
the stress field and predict the HF behavior upon encountering the
stratigraphic interface. However, in the composite rock mass, the
stress intensity factor at the HF tip should reflect the influence of
the differential mechanical properties of the two formations on
both sides of the interface. Moreover, as an HF contacts the inter-
face at an arbitrary angle (nonorthogonal angle), the stress ahead of
the fracture tip will exhibit an apparent oscillating singularity on
the interface, which significantly differs from the stress intensity
factor in a homogeneous medium.

With known a and b values in Eq. (8), the interface eigenvalue l

can be derived from Eq. (7). When the HF orthogonally intersects
the stratigraphic interface, the interface eigenvalue l will be a real
solution rather than a complex number due to the geometric
symmetry of this special case, indicating that the stress field may
not exhibit an oscillating singularity. Therefore, the induced stress
field (Eq. (B.9)) becomes
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ðsq1 þ itrq1Þq¼0 ¼ rl�1K ¼ rl�1ðK1 þ iK2Þ (11)

where le1 represents the stress singularity.
In the case of l ¼ 1=2, the opening (K1) and shearing (K2) modes

of stress intensity factors have the same dimensions as homoge-
neous materials. However, for ls1=2, K1 and K2 in the composite
rock mass possess different dimensions. In addition, the magni-
tudes of K1 and K2 are correlatedwith the normal and shear stresses
near the HF tip. Given the orthogonal orientation between the HF
and the interface, the shearing mode of the stress intensity factor is
ignored, i.e., K2 ¼ 0 and K1]KIC.

To ensure the validity of linear elastic fracture mechanics
(LEFM), a critical radius (rc) of the nonlinear zone ahead of the HF
tip was introduced in accordance with Renshaw and Pollard (1995),
who assumed that rc delineated the scope of the nonlinear (plastic)
zone produced by the singularity at the HF tip so that the rock
outside the nonlinear region was considered to follow LEFM.

For an orthogonal intersection case (Fig.1), the stress field near a
fracture tip is approximated as (Gu et al., 2012)

8>>>>>>>><
>>>>>>>>:

sx ¼ sh þ 3K1

4
ffiffiffiffiffiffi
pr

p

sy ¼ sv þ K1

4
ffiffiffiffiffiffi
pr

p

txy ¼ � K1

4
ffiffiffiffiffiffiffiffiffi
2pr

p

(12)

where sx represents the total stress component along the x-axis; sy
is the total stress component along the y-axis; and txy is the
tangential stress. The maximum principal stress (s1) on the inter-
face can be calculated by

s1 ¼
sx þ sy

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�sx � sy
2

�2 þ t2xy

r
(13)

If the maximum principal stress is equal to the tensile strength
of the rock in front of the HF tip (T0), the critical radius rc of the
nonlinear zone can be obtained with r ¼ rc in Eq. (12).

In previous laboratory experiments and field analysis (Blanton,
1986; Lei et al., 2019; Wu et al., 2021; Zhao et al., 2019; Zhang
Fig. 2. CZM numerical model
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et al., 2020b), three main intersection modes (crossing, opening,
and slippage) were observed between an HF and a stratigraphic
interface. Both slippage and opening can result in the termination
of HF propagation, and then the internal fluid may flow along the
direction of the NF, which further contributes to excessive fluid
leakage. Combining the interfacemodel presented in this paper, the
critical slippage condition for the interface is

jtj �C þ fsN (14)

where C is the cohesion of the interface, and f is the friction coef-
ficient of the interface.

As the fluid pressure within the HF is greater than the total
normal stress on the interface, the interface between the two
different formations can be dilated, which causes the HF to prop-
agate along the stratigraphic interface. This kind of HF behavior can
be formulated by

sN � PHF (15)

where PHF represents the fluid pressure inside the HF.
In reality, due to HF tip singularity, a critical point can be found

near the crack tip satisfying the condition s1 ¼ T0. Therefore,
theoretically, crossing can occur regardless of whether the interface
slips or opens. However, once slippage or dilation occurs before
crossing, the stress field at the interface can be changed dramati-
cally, which may disturb the subsequent crossing behavior (Zhao
et al., 2019). Therefore, crossing becomes the last behavior to be
considered after slippage and dilation. In other words, the HF will
cross the stratigraphic interface in the case of no slippage and no
dilation at the interface, which can be expressed as

8<
:

s1 ¼ T0
jtj � C þ fsN
sN � PHF

(16)
of composite rock mass.



Table 1
Basic parameters of CZM simulation.

Physical parameter Shale (Zhao et al. 2022a) Mudstone (Zhao et al., 2007)

Elastic modulus E, GPa 22.9 4.9
Poisson's ratio v 0.36 0.17
Tensile strength T0, MPa 3.36 0.569
Cohesion C, MPa 15.77 2.99
Friction angle 4, degree 38.97 30.3
Fracture toughness, MPa m1/2 1.0 0.87
Permeability coefficient k, m/s 1 � 10�7 1 � 10�8

Leak-off coefficient m 1 � 10�14 1 � 10�14

Void ratio 0.1 0.1
Fluid volumetric weight, N/m3 9800

Fig. 3. Example 1: Comparison of normal and shear stress fields on the interface between the presented model and CZM simulations.

Fig. 4. Example 2: Comparison of normal and shear stress fields on the interface between the presented model and CZM simulations.
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3. Validation

3.1. Comparison to numerical simulation results

TheMode I bilinear cohesive zone model (CZM) has beenwidely
applied to model a single crack tip and describe crack nucleation
and pervasive cracking for various time or length scales in elastic
solids (Elices et al., 2001; Park and Paulino, 2011; Peng et al., 2021).
In a CZM, the fracture process zone is lumped into the fracture line
and is characterized by a traction-separation law that depends on
2815
material properties, which essentially eliminates the stress singu-
larity ahead of the fracture tip and improves the solution conver-
gence of the equations derived from LEFM (Dahi Taleghani et al.,
2018; Khoramishad et al., 2010). However, according to
Lecampion et al. (2018), the CZM approach possesses some inevi-
table restrictions in simulating HF problems: (i) the direction of
fracture propagation in the CZM must be known or actively upda-
ted during propagation; (ii) the simulated fracture morphology is
highly dependent on the meshing accuracy; and (iii) an improper
mesh will result in bias in the fracture propagation direction as the



Fig. 5. Final HF propagation behavior based on CZM simulations.

Table 2
Related calculation parameters from interface model of composite rock mass.

Parameter Example 1 Example 2 Remarks

Lower shale Upper mudstone Lower mudstone Upper shale

Elastic modulus E, GPa 22.9 4.9 4.9 22.9 Zhao et al. (2007, 2022a)
Poisson's ratio v 0.36 0.17 0.17 0.36
Shear modulus m, GPa 8.4191 2.0940 2.0940 8.4191

mj ¼ Ej
2ð1þ vjÞ

k 1.56 2.32 2.32 1.56 kj ¼ 3� 4vj
a �0.6782 0.6782 Eq. (8)
b �0.2984 0.2984 Eq. (8)
l 0.32 0.69 Eq. (A.33)
D1 0.2919 1.0012 Eq. (B.5)
b �0.8644 �0.0545 Eq. (B.7)
c 1.8507e0.0001i 0.5411 þ 0.0024i Eq. (B.8)
sq1 þ itrq1 0.0697 þ 0.6331i 0.4894 þ 0.1706i Eq. (9)
sN � PHF >0 <0 Table 1
jtj � ðC þ fsNÞ <0 <0
s1 � T0 >0 <0
HF behavior Crossing Arrested
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fracture extends to an unknown fracture path. Since the focus of
this section is the prediction of HF behavior at the formation
interface rather than the investigation of fracture initiation and
propagation characteristics before or after the intersection, the
fracture trajectory is actually determined (approximated by a
cohesive element along the HF propagation direction) before the
simulation. Under this circumstance, the CZM allows direct inte-
gration along the preset fracture boundary, and the high mesh
dependency caused by cohesive element edges is largely avoided,
which significantly reduces the computational costs. Therefore, the
CZM approach is employed to verify the applicability of the inter-
face model of the composite rockmass by comparing the prediction
Table 3
Basic parameters of Jiang et al.'s experiment (2019).

Material parameter Tensile strength T0, MPa Fracture toughness KIC, MPa m1/2 Po

Cement 4.56 0.98 0.1
Coal 1.69 0.2 0.2
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outcomes to CZM simulation results under the same conditions.
Two numerical models considering reservoirs of different combi-
nations of shale and mudstone (Example 1 and Example 2) are
constructed, as shown in Fig. 2. The interface and HF are simulated
by cohesive elements (delineated by the blue solid and dashed lines
in Fig. 2, respectively), and the linear traction-separation relation-
ship defines the critical conditions for crack initiation and propa-
gation. The displacements of the upper and lower sides are fixed in
the y-axial direction, and the displacements of the left and right
sides are fixed in the x-axial direction. The vertical and horizontal
in-situ stresses are 20 and 13MPa, respectively. For each simulation,
the fluid is injected at a constant flow rate of 0.01m2/s. The physical
isson's ratio v Porosity f, % Elastic modulus E, GPa Permeability K, 10�15 m2

9 7.9 6.58 0.0039
3 8.9 3.48 0.014e0.20



Table 4
Comparison between Jiang et al.’s (2019) experimental observations and prediction results from the interface model of composite rock mass.

sv, MPa sh, MPa rc, 10�5 m f l xcritical, m Experimental observations Prediction results

6 3 1.7735 0.72 0.38 0.0024 No crossing Dilated
7 3 1.1847 0.72 0.38 0.0020 No crossing Dilated
8 3 0.8469 0.72 0.38 0.0018 No crossing Slippage
9 3 0.6353 0.72 0.38 0.0016 Crossing Crossing
6 3 1.7735 0.4976 0.38 0.0024 No crossing Dilated
7 3 1.1847 0.4976 0.38 0.0020 No crossing Dilated
8 3 0.8469 0.4976 0.38 0.0018 No crossing Slippage
11 3 0.3951 0.4976 0.38 0.0013 Crossing Crossing
11 3 0.3951 0.2557 0.38 0.0013 No crossing Slippage
12 3 0.3233 0.2557 0.38 0.0012 No crossing Slippage
13 3 0.2693 0.2557 0.38 0.0011 No crossing Slippage
14 3 0.2278 0.2557 0.38 0.0011 No crossing Slippage
15 3 0.1952 0.2557 0.38 0.0010 Crossing Crossing
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parameters of the shale and mudstone formations employed for
simulation are summarized in Table 1.

In Example 1 (Fig. 2a), with the knownparameters in Table 1, the
total normal and shear stresses on the interface can be analytically
calculated by combining Eqs. (7)e(10) and numerically obtained by
CZM simulation. The stress comparison outcomes are displayed in
Fig. 3. Due to the symmetry of the numerical model, it is appro-
priate tomerely consider the stress on the right side of the interface
(i.e., x > 0).

Fig. 3a depicts the comparison of the normal stress between the
CZM simulated results and the predictions of the interface model.
Whether in the CZM simulation or analytical prediction, the normal
stress decreases with increasing horizontal distance x. In addition,
the stress increases toward the HF tip (x¼ 0). This phenomenon can
be attributed to the crack-tip stress singularity, as introduced by
Renshawand Pollard (1995). However, the increase in normal stress
in the CZM tends to decrease in the vicinity of the HF tip (x ¼ 0),
contrary to the considerable increase in stress derived by the
interface model. This result can be explained by the assumption of
the linear tractioneseparation relationship of CZM that maximally
weakens the stress singularity at the HF tip. In this regard, the re-
sults of the interface model are capable of better reflecting the
stress state of the HF tip compared to the CZM simulation results.
From Fig. 3b, we show a similar shear stress variation trend.
However, some subtle disparities can also be discerned in the shear
stress curves: the shear stress magnitude in the interface model
drops more significantly and quickly than that in the CZM simu-
lation with the equal increment of the horizontal distance x. In
theory, the singularity at the HF is enhanced due to the combined
effect of the interface between two different materials (Akisanya
and Meng, 2003; Ming-Yuan and Hutchinson, 1989; Zhao et al.,
2022b). Therefore, the CZM results can reflect the issues related
to HF initiation and propagation but cannot represent this kind of
Table 5
Mechanical properties of specimens used for AlTammar et al.'s experiment (2019).

Sample No. Sample composition (mass
fraction), %

E, MPa KIC, MPa m1/2 T0, MPa

Plaster Talc Hydrostone

1 40 60 0 124.11 0.037 2.25
2 60 40 0 268.91 0.075 0.69
3 80 20 0 579.18 0.113 1.21
4 100 0 0 1137.68 0.166 2.25
5 80 0 20 1889.23 0.203 2.48
6 60 0 40 2730.42 0.256 2.90
7 40 0 60 4061.16 0.297 4.15
8 20 0 20 4860.98 0.352 4.69
9 0 0 100 6336.51 0.398 6.23

2817
interface effect, further illustrating the advantage and necessity of
using the newly derived interface model.

For further validation, a simulation model consisting of upper
shale and lower mudstone (Example 2 in Fig. 2b) was also devel-
oped, and the obtained results were compared to the calculated
outcomes of the above interfacemodel. Fig. 4 shows the normal and
shear stress comparisons under the same parametric conditions
(Table 1). Compared to Example 1, a similar difference in the normal
and shear stresses between the CZM simulation and model pre-
diction results is identified in Example 2. However, the stress curves
almost coincide except for some nuance of the singularity (in
x � 3 m for normal stress and x � 5 m for shear stress) around the
intersection point (O).

Fig. 5 shows the simulation results and the corresponding Mises
stress distribution. In Example 1 (upper mudstone and lower
shale), the HF crosses the interface after the HF tip reaches the
stratigraphic interface (Fig. 5a). Nevertheless, after exchanging the
material properties of the upper and lower layers, the HF propa-
gation is arrested by the interface, as shown in Fig. 5b. This HF
behavior is consistent with the prediction results of the interface
model in Table 2. Therefore, it is reasonable to infer that such an
interface model of a composite rock mass is suitable for predicting
the behavior of an HF at the stratigraphic interface.

3.2. Comparison to laboratory experiments

In this section, we turn to previously published laboratory evi-
dence to verify the applicability of the interface model of composite
rock masses. Three independent experiments were employed for
validation based on the works of Jiang et al. (2019), AlTammar et al.
(2019), and Ham and Kwon (2020).

3.2.1. Jiang et al.'s experiment
Jiang et al. (2019) performed triaxial hydraulic fracturing ex-

periments adopting coal-rock blocks with different friction co-
efficients. In accordance with Jiang et al. (2019), the cohesion of the
formation interface is assumed to be zero. Other parameters used in
Jiang et al.’s (2019) experiment are summarized in Table 3.

Table 4 lists the summary of the experimental observations from
Jiang et al. (2019) and the calculation outcomes from the interface
model. A restriction to the validity of LEFM is the condition that the
plastic deformation can be confined to a small nonlinear zone at the
HF tip encompassed by the stress singularity (Llanos et al., 2017).
Therefore, the critical radius (rc) of the nonlinear zone ahead of the
HF tip is also summarized in Table 4. Considering the effect of the
stress singularity at the HF tip, the critical position (xcritical) is
assumed to be the distance from the HF tip to the interface where a
new HF crosses the interface (s1 ¼ T0), in line with Zhao et al.



Table 6
Comparison between AlTammar et al.'s (2019) experimental observations and prediction results from the interface model of composite rock mass.

Propagating layer Bounding layer rc, m xcritical, m Experimental observations Prediction results

3 2 0.005 0.0276 Crossing Crossing
3 6 0.0019 0.0025 Crossing Crossing
3 5 0.0017 0.0023 Crossing Crossing
3 7 0.0012 0.0014 Crossing Crossing
2 5 0.00049 0.00056 Crossing Crossing
4 7 0.0012 0.0014 Crossing Dilated
3 5 0.0017 0.0023 Crossing Crossing
2 4 0.0014 0.002 Crossing Crossing
4 6 0.0019 0.0025 Crossing Crossing

Table 7
Basic parameters of Ham and Kwon's experiment (2020).

Parameter Fracture toughness KIC, kPa m1/2 Poisson's ratio v Elastic modulus E, kPa

Low stiffness 0.40
1.33
1.53
3.19

0.5 (incompressible) 38
Medium stiffness 90
High stiffness 110
Very high stiffness 283

Table 8
Comparison between Ham and Kwon's (2020) experimental observations and prediction results from the interface model of composite rock mass.

Propagating layer Bounding layer No. rc, 10�6 m xcritical, 10�5 m First observations Prediction results

Medium stiffness Low stiffness M-2-L 0.9276 0.8275 Crossing Crossing
Medium stiffness M-2-Ma 8.3718 7.4684 Dilated Dilated

M-2-Mb 8.3718 7.4684 Crossing Dilated
M-2-Mc 8.3718 7.4684 Dilated Dilated

High stiffness M-2-H 15.080 13.452 Dilated Dilated
Very high stiffness M-2-VH 94.400 84.210 Dilated Dilated

Fig. 6. Normal and shear stress distributions on the interface under different elastic moduli.
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(2019). xcritical is obtained by combining Eqs. (9)e(13). To ensure the
validity of the LEFM, the calculation point mentioned in the above
interface model should be outside the nonlinear zone, i.e.,
xcritical � rc.

Note that the predictions of “dilation” and “slippage” both
belong to the “no crossing” case following the critical stress con-
ditions in the interface model. In this regard, the prediction out-
comes of the interface model show good agreement with the
2818
experimental results, as illustrated in Table 4. This consistency is a
good evidence of the reliability of the newly developed interface
model. Furthermore, although the theoretical prediction of the
experimental observations has already been compared by Jiang
et al. (2019) using their model, the newly presented interface
model can provide a more specific evaluation of the HF behavior in
the case of no crossing (i.e., slippage or dilation). It is widely
accepted that the HF will either move forward (crossing) or be



Fig. 7. Normal and shear stress variations with the increase in E2/E1 at several fixed locations.
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arrested (no crossing) when reaching the interface. However,
where and how the HF is arrested or terminated by the interface
remains unknown. This difficulty, to a large extent, restricts the
development of hydraulic fracturing construction designs. Thus, it
is necessary to specify the possible HF behavior in the case of no
crossing, especially for HF growth in the composite rock mass.

3.2.2. AlTammar et al.'s experiment
AlTammar et al. (2019) reported numerous hydraulic fracturing

tests based on a fracture cell that enables direct observation of
fracture growth near material interfaces. Different layered speci-
mens (154.4 � 152.4 � 3.2 mm3 in size) were cast by mixing talc
with plaster to make softer materials and mixing hydrostone with
plaster to simulate harder materials (reservoirs), which created
known contrasts in layer properties between adjacent layers. All
specimen mixtures had an approximately constant Poisson's ratio
between 0.22 and 0.25 according to AlTammar et al. (2019). For the
convenience of calculation, Poisson's ratio is taken as 0.23. Other
mechanical properties of these rock-like specimens are shown in
Table 5. In addition, a 0.45 MPa far-field stress was applied parallel
to the specimen's long side in the horizontal direction, and the
other long side was unconfined in the vertical direction. The HF
growth was captured by a high-resolution digital camera in real
time, facilitating the estimation of HF behavior at the interface.

Table 6 summarizes AlTammar et al.'s experimental results and
the predictions based on the interface model of the composite rock
mass. The highlighted cells show the mismatch cases between the
experimental observation and prediction outcomes. It is clear that
only one inconsistent case is found in Table 6, which indicates that
the experimental observations generally agree well with the
model's predictions.

3.2.3. Ham and Kwon's experiment
Ham and Kwon (2020) simulated the hydraulic fracturing pro-

cess of an HF crossing an orthogonal discontinuity between mate-
rials of different stiffnesses. Photoelastic, transparent, and soft (or
deformable) gelatin was chosen as analogs to soft reservoir rocks,
which allowed direct observation of the HF propagation state and
interaction behavior. The material properties of the gelatin samples
are summarized in Table 7. Table 8 lists the comparison between
Ham and Kwon's (2020) experimental observations and the
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prediction outcomes from the interface model of the composite
rock mass. Overall, the calculation outcomes obtained from the
interface model of the composite rock mass show good agreement
with the experimental results except for the M-2-Mb test (high-
lighted in bold font in Table 8).

Reviewing the results of the three experiments in Tables 4, 6 and
8, we observed two inconsistent cases in total. According to Zhao
et al. (2019), the mismatch can be attributable to the existence of
nonlinear (plastic) zones and the combined action of the stress
singularity ahead of the fracture tip, which can induce either soft-
ening or hardening inside the nonlinear region of the rock. Then,
the actual radius of the nonlinear region is changed so that the
initial linear elastic stress assumption about rc (i.e., r> rc) is invalid,
thus leading to inconsistent cases. Nonetheless, the inconsistent
cases are in an acceptable range. Therefore, the developed model
can reliably predict the HF penetration and termination behavior at
the interface between two layers with different mechanical
properties.

4. Parametric sensitivity analysis

This section presents a parametric sensitivity analysis to explore
the influence of the related parameters in the interfacemodel of the
composite rock mass (i.e., elastic modulus, Poisson's ratio, and
fracture toughness). The control variable method was adopted by
successively and independently varying a parameter while other
parameters remained constant. For convenience, we chose the
physical parameters from Jiang et al.'s experiment (2019) for
calculating and analyzing the stress field within the interval range
of (0, 0.15 m) on the interface. The vertical and horizontal in-situ
stresses are kept constant at sv ¼ 6 MPa and sh ¼ 3 MPa,
respectively.

4.1. Influence of the elastic modulus

The normal and shear stress distributions on the interface under
different ratios of elastic modulus are plotted in Fig. 6, respectively.
Note that the origin of the coordinates in Fig. 6 is consistent with
the intersection point (O in Fig. 1) between the HF and the interface.
Despite the influence of elastic modulus, the stress value ap-
proaches infinity at the HF tip; then, with the increase in the
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horizontal distance x, the stress decreases. In addition, enlarging
the difference in elastic modulus between Formation 2 and For-
mation 1 (expressed by a dimensionless ratio E2/E1) generally re-
sults in a reduction in the normal stress (especially for E2/E1 > 1.5)
and a rise in the shear stress, but does not change the overall stress
distribution law.

For the convenience of comparison, the stress values at the
horizontal distance (x) of 0.004, 0.007, 0.01, 0.07, and 0.15 m were
extracted and plotted in another form, as shown in Fig. 7. With the
increase in E2/E1, the normal stress first increases and then de-
creases (Fig. 7a), implying that the normal stress is a nonmonotonic
function of the elastic modulus contrast. This effect appears to be
more prominent at a location closer to the HF tip (x < 0.01 m). Amid
this range, the normal stress approximates its maximum at E2/
E1¼1.5, which represents the optimal elastic modulus combination
of the composite rock mass that generates the maximum normal
stress component on the interface. Fig. 7b displays the continuous
increasing tendency of shear stress with the increase in elastic
modulus contrast, which reveals that the shear stress is positively
Fig. 8. Critical opening and slippage curves for vertical HF propa
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correlated with the modulus contrast.
Fig. 8 exhibits how the HF extends under the influence of stress

difference andmodulus contrast at the friction coefficient of 0.2557,
0.4976 and 0.72, respectively. Overall, different friction coefficients
will change the geometry of the critical slippage curves and affect
HF behavior (crossing or slippage). In the case of fixed friction co-
efficient (e.g., f ¼ 0.4976), the effect of modulus contrast between
adjacent layers can be disturbed by the magnitude of stress dif-
ference. For a high stress difference (e.g., D ¼ 5), the crossing scope
accounts for a larger proportion than opening and slippage at
higher E2/E1, which indicates that increasing the modulus ratio (E2/
E1) will facilitate the occurrence of crossing. With the decrease in
the stress difference, the crossing range of E2/E1 also decreases.
When the stress difference is relatively low (e.g., D ¼ 0.2), the
stratigraphic interface is likely to be dilated by the HF despite
changing E2/E1. These results are consistent with the observations
of hydraulic fracturing experiments (Abe et al., 2021; Zhou et al.,
2008).

According to the in-situ stress data reported by Zhao et al.
gation behaviour based on Jiang et al.'s experiment (2019).



Fig. 9. Normal and shear stress distributions on the interface under different Poisson's ratios.
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(2007), the practical stress difference ratio (D) was generally less
than 0.8 in most parts of China. This range is partly aligned with the
crossing stress scope at f¼ 0.4796 (for E2/E1¼4e6) in Fig. 8b, which
demonstrates the model's validity for predicting the occurrence of
crossing under practical stress conditions. In fact, the stress dif-
ference ratio in Fig. 8 only presents a theoretical evaluation of HF
behavior based on particular friction coefficients tested by Jiang
et al. (2019) in the laboratory. Some inconsistency may appear
when these results are directly applied to engineering practice.
Nevertheless, the current results can still illustrate that the influ-
ence of elastic modulus on HF behavior at the interface is easily
disturbed by the in-situ stress difference.
4.2. Influence of Poisson's ratio

To investigate the effect of Poisson's ratio on HF behavior, we
defined a dimensionless parameter v2/v1 to characterize the
Fig. 10. Normal and shear stress variations with th
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relative magnitudes of the Poisson's ratios of the upper and lower
formations. The allowable range of Poisson's ratio for an elastic
material in the geostress field is from 0 to 0.5 (Ciambella et al.,
2015). With fixed v1 ¼ 0.23, the value of v2/v1 ranges from 0.5 to
2. Fig. 9 shows the normal and shear stress distribution on the layer
interface's right side (x � 0). Fig. 9 also shows that the variation in
Poisson's ratio mainly changes the stress value and hardly alters the
geometry of the stress distribution curves. In addition, both normal
and shear stresses remain approximately constant under different
Poisson's ratios, differing from the influence of the elastic modulus
on the stress value. Fig. 10 shows the variation in the stress value at
certain designated locations outlined in Fig. 9. The normal stress
decreases slightly with increasing v2/v1, while the shear stress
considerably increases. Moreover, both the normal and shear stress
values are sensitive to the distance (x) from the HF tip. This kind of
sensitivity is primarily manifested by the variation in the stress
value: closer to the HF tip, the impact of Poisson's ratio on the stress
e increase of v2/v1 at several fixed locations.



Fig. 11. Normal and shear stress variations with the increase of KIC1 at several designated locations.
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value is more prominent. But at a location away from the HF tip
(x > 0.07 m), the effect of Poisson's ratio gradually weakens.

Generally, Poisson's ratio has a minor effect on changing the
stress distribution at the interface. Compared to the elastic
modulus, Poisson's ratio may not be a dominant factor in HF height
containment.
4.3. Influence of fracture toughness

The fracture toughness of a material essentially reflects the
critical initiation capacity of a new crack during the rock fracturing
process. In this section, the influence of the fracture toughness
(KIC1) of Formation 1 (target layer of the propagating HF) was
analyzed by varying KIC1 from 0.1 to 3.2 MPa m1/2. Meanwhile, the
fracture toughness (KIC2) of Formation 2 (pay zone layer initially
containing the HF) remains constant at 0.98 MPa m1/2.

As shown in Fig. 11, the normal and shear stresses exhibit linear
relationships with KIC1. Eq. (9) can partly explain this relationship,
which shows a linear correlation of the fracture toughness (critical
stress intensity factor) with the induced stress field ahead of the HF
tip. At the same location (horizontal distance x) of 0.004, 0.007,
0.001, 0.07, or 0.15 m), the larger the fracture toughness is, the
greater the normal and shear stresses are projected at the interface.
Due to the stress singularity at the HF tip, a similar location-related
variation in the stress value can also be found despite the effect of
fracture toughness: the stress increases toward the HF tip.

Compared to the normal stress, the fracture toughness (KIC1)
appears to have a more significant effect on the shear stress. Spe-
cifically, at the location x ¼ 0.004 m, as the fracture toughness
changes from 0.2 to 0.4 MPa m1/2, the normal stress increases from
7.18 to 8.36 MPa (increased by only 16.4%), and the shear stress
increases from 2.09 to 4.19 MPa (almost doubling). Hence,
increasing the fracture toughness of the bounding layer (KIC1) can
produce more shear stress components on the interface and pro-
mote the occurrence of slippage. This conclusion, to some degree,
contradicts our previous findings in Zhao et al. (2019) that
increasing the fracture toughness can inhibit the slippage behavior.
However, it should be noted that a homogeneous medium (one
rock material) is concerned in Zhao et al. (2019). These inconsistent
results may come from the combined effect of two different rock
materials with an interface in the currentmodel, which changes the
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singularity state of the HF tip and facilitates the occurrence of
slippage on the interface (Liu et al., 2021; Lu et al., 2015).

4.4. Comparison of the influence of the three parameters

One location (0, 0.004 m) near the fracture tip was chosen to
compare the influence degree of the three parameters (elastic
modulus, Poisson's ratio, and fracture toughness). Fig. 12a and b
shows the normal and shear stresses at this location under different
ratios of the three parameters (i.e., E2/E1, v2/v1, and KIC2/KIC1).
Clearly, the fracture toughness contrast between adjacent layers
appears to be themost dominant parameter influencing the normal
and shear stress values, the elastic modulus ranks second, and
Poisson's ratio has the minimal impact on the stress. With the in-
crease in the corresponding dimensionless ratio, the effect of the
fracture toughness contrast on the shear stress weakens. In
contrast, the elastic modulus contrast gradually dominates the
variation in the shear stress. This result indicates that when the
mechanical properties (fracture toughness and elastic modulus) of
the bounding layer are greater than those of the pay zone layer, the
interface is more likely to be affected by the fracture toughness
contrast; otherwise, the interface is more susceptible to the
modulus contrast.

Furthermore, based on the critical slippage condition (Eq. (14)),
the effects of the three parameters on the interface's slippage sta-
bility can be evaluated by the following equation:

F ¼C þ fsN � jtj (17)

In accordance with Jiang et al. (2019), the interface cohesion is
known (C ¼ 0), and the friction coefficient is taken as 0.2557. Then,
the slippage stability is analyzed by combining the normal and
shear stresses under different ratios of elastic modulus, Poisson's
ratio, and fracture toughness. If the function F is less than zero,
slippage occurs on the interface. Otherwise, the interface remains
stable in the shear direction.

Fig. 12c plots the slippage tendency with increasing dimen-
sionless ratios of the three parameters. Generally, the Poisson's
ratio difference between the adjacent layers can only increase the
slippage tendency of the formation interface (or increase the shear
stress on the interface) but cannot lead to interface slippage (i.e., F is
always greater than 0). This result is caused by the range limitation



Fig. 12. Comparison of stress variation and slippage stability at the location (0, 0.004 m) with the increase in the dimensionless ratio of elastic modulus, Poisson's ratio, and fracture
toughness.
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of Poisson's ratio (0 < v � 0.5), as aforementioned in Section 4.2. In
contrast, increasing the elastic modulus of the pay zone layer (E2/
E1 > 4.7) and increasing the fracture toughness of the bounding
layer (KIC2/KIC1 < 1.4) will ultimately cause shear slippage on the
interface. Once slippage occurs, the growth of the HF will likely
terminate, and no crossing will occur. Therefore, the elastic
modulus and fracture toughness are the main parameters that in-
fluence HF penetration and termination at the interface.

The higher fracture toughness of the bounding layer restricts the
HF from crossing the interface by promoting slippage on the
interface, which is consistent with the theoretical inference of
Thiercelin et al. (1989) and the experimental observation of Xing
et al. (2018). For the elastic modulus, it has been well docu-
mented that a fracture will theoretically be arrested when propa-
gating from a lower-modulus layer toward a higher-modulus layer
(Simonson et al., 1978). However, some numerical studies (Gu and
Siebrits, 2008) and field evidence (Wolhart et al., 2004) show that
low-modulus bounding layers can contain the growth of the HF
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height. In Fig. 12c, it can also be observed that the lower elastic
modulus of the bounding layer (i.e., higher E2/E1) increases the
possibility of shear slippage on the interface and thus prevents the
HF from crossing the interface. This contradictory influence of the
modulus contrast can be attributed to the disturbance of the
magnitude of stress difference that probably reduces the impact of
the elastic modulus contrast on the HF growth behavior, as shown
in Fig. 8. In this sense, the influence of the elastic modulus contrast
on HF growth is complex and easily disturbed by the in-situ stress
difference. In addition, according to Gu and Siebrits (2008),
Warpinski et al. (1982), and Xing et al. (2018), the fracture process
zone, fluid viscosity, fracture width, and in-situ stress gradients can
also hinder the effects of the elastic modulus contrast on HF
behavior at the interface. The roles of these parameters, which are
not considered in the current theoretical model, clearly must be
accounted for in future research. Nonetheless, the results of this
parametric study can still be applied to control the HF height
growth in formations with varying properties provided that the in-
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situ stress is kept constant. On the other hand, it is imperative to
determine the relative difference in the fracture toughness and
elastic modulus between the pay zone and bounding layer in a
region where effective fracture containment is desired.

5. Conclusions

In this paper, an interface model of a composite rock mass with
an HF orthogonally intersecting a stratigraphic interface was pro-
posed to predict HF penetration (crossing) or termination (dilation
or slippage) at the interface. To verify the model's applicability and
reliability, comparisons between this model's predictions and CZM
simulation results as well as previously published experimental
evidence were conducted. A parametric study of the elastic
modulus, Poisson's ratio and fracture toughness was presented, and
the influence degree of the three parameters was compared. The
following conclusions were primarily obtained:

(1) Due to the stress singularity at the HF tip, the normal and
shear stresses at the interface decrease away from the HF tip.
Compared to the CZM, the new model additionally reflects
the changes in the singularity of the HF tip at the interface of
two dissimilar materials, which further illustrates the
advantage of the presented model. The calculation outcomes
obtained from the new model are generally consistent with
the experimental data.

(2) With increasing E2/E1, the normal stress acting on the inter-
face first increases and then decreases, whereas the shear
stress shows a continuously increasing trend, which implies
an increasing possibility of slippage. The effect of the elastic
modulus contrast on HF growth can be disturbed by stress
difference. For a high stress difference, increasing the elastic
modulus contrast between adjacent layers will facilitate
crossing. However, at a relatively low differential stress, the
stratigraphic interface may continue to be dilated by the HF
regardless of the changes in E2/E1.

(3) The contrast in Poisson's ratio has a minor effect on HF
behavior at the formation interface. The normal stress acting
on the interface decreases slightly with increasing v2/v1,
while the shear stress displays an apparent increasing trend.

(4) Compared to the variation in the normal stress, increasing
the fracture toughness of the bounding layer (Formation 1)
inducesmore shear stress at the interface, whichmay further
promote interface slipping and thereby restrict the HF from
crossing the interface.

(5) Among the three studied parameters, Poisson's ratio exerts
the least interference effect on the HF behavior at the strat-
igraphic interface. When the fracture toughness and elastic
modulus of the bounding layer are greater than those of the
pay zone layer, the HF growth at the interface is prone to be
affected by the fracture toughness contrast; otherwise, the
HF growth is more sensitive to the elastic modulus contrast.
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Appendix A. Solving the interface eigenvalue l

To solve the interface eigenvalue l, we introduced the following
matrix functions

HðxÞ ¼
�
e2ix 0
0 e�2ix

	
; FðxÞ ¼

�
0 e�2ix

e2ix 0

	
(A.1)

Then, the following relationship holds

HðxÞHð � xÞ ¼ I; FðxÞFðxÞ ¼ I (A.2)

HðxÞFðdÞ ¼ Fðd� xÞ ¼ FðdÞHð � xÞ (A.3)

Hðxþ dÞ ¼ HðxÞHðdÞ ¼ HðdÞHðxÞ (A.4)

FðxÞFðdÞ ¼ Fð � dÞFð � xÞ ¼ Hð � xÞHðdÞ (A.5)

where the symbol I is the unit matrix.
From Eq. (6e), we have
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(A.6)

From Eq. (6f), we get
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From Eq. (6a), we obtain�
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From Eq. (6b), we derive
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From Eq. (6c), we have�
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From Eq. (6d), we obtain
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Choosing ðA3;B3ÞT as the only final undetermined coefficient,
we can eliminate other coefficients by combining Eq. (6a) e (6f).

We substitute Eq. (A.6) into Eq. (A.8) and obtain
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After multiplying both sides with H
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Substitution of Eqs. (A.6) and (A.12) into Eq. (A.9), we get
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The above equation can be further expressed as
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By virtue of the relationship between HðxÞ and FðxÞ, Eq. (A.13)
can be reduced to
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By substituting Eqs. (A.7) and (A.12) into Eq. (A.10), the following
equation can be obtained:
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Then, the above equation becomes
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Let's multiply both sides of Eq. (A.15) by H
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By substituting Eqs. (A.7) and (A.12) into Eq. (A.11), the following
equation can be obtained
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Using the Dundurs’ parameters (Eq. (8)), Eq. (A.14) can be
rewritten as
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Similarly, Eq. (A.17) can be rewritten as
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From Eq. (A.18), we have
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Eq. (A.20) is multiplied by 1�a
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From Eq. (A.21), we can get
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Substituting Eqs. (A.21) and (A.23) into Eq. (A.16) gives
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If Eq. (A.24) is multiplied by F
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Then, we substitute Eq. (A.18) into Eq. (A.25) and multiply the
results by HðlpÞ
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Eq. (A.19) is substituted into Eq. (A.26)
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Eq. (A.1) can be further substituted into Eq. (A.26),
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The above equation can be simplified to a form,
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Similarly, we substitute Eq. (A.1) into Eq. (A.27) and obtainwhich

can be reduced to
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Finally, Eq. (A.29) is substituted into Eq. (A.28)which can be

rewritten as
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According to the theory of linear algebra, the condition that the
undetermined coefficient in the Goursat's stress function has a
non-zero solution is that the coefficient determinant in Eq. (A.31)
equals zero, namely,
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After simplification, Eq. (A.9) can be further expressed as

aþ b2 þ
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2l2
¼ða� bÞð1� bÞ (A.33)
Appendix B. Deriving induced stress on stratigraphic
interface

In order to determine the specific expression of the stress field
at the HF tip, it is necessary to know the undetermined coefficients
(Aj, Bj, Cj, and Dj) in Goursat's stress function. Now let A ¼ A1 þ B1,
then, other coefficients can be expressed by A. Combining Eqs. (6a),
(6b) and (6e), we can eliminate Cj and Dj and obtain
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After simplification, Eq. (B.1) transforms
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Then, Eq. (B.2) can be further reduced to
By substitution of the first expression of Eq. (B.3) into its second
equation, we obtain
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Subsequently, Eq. (B.4) is simplified to be
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where D1 ¼ ð1þ bÞ2 þ ð1 � 4l2Þða� bÞ2 þ 2ð1 þ bÞða � bÞcos lp.
Similarly, we used A1þB1 to replace C1þD1 by combining Eqs.

(6a) and (6e)
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¼ lA� e�ilpA�2lðA2 þB2Þþ

�
e�ilp � e�2ilp

�
ðA2 þB2Þ

¼ bAþ cA
(B.6)

with
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(B.7)

c¼ � e�ilp þ 1� a

D1

h
ð1þ bÞe�ilp

�
1� e�ilp

�
þða� bÞ

�
1þ

�
4l2 � 1

�
e�ilp

�i
(B.8)

Combining Eq. (4) and (B.6), we have

sq1 þ itrq1 ¼ rl�1
h
Al2eiðl�1Þq þAle�iðl�1Þq þðbAþ cAÞleiðlþ1Þq

i
(B.9)

The stress intensity factor is defined by the stress ahead of the
HF tip (not on the interface), as given by

ðsq1 þ itrq1Þq¼0 ¼ rl�1
h
Al2 þAlþ lbAþ lcA

i
¼ rl�1K (B.10)

after simplification,

K ¼K1 þ iK2 ¼Al2 þAlþ lbAþ lcA (B.11)

where K1 represents the opening-mode (mode I) stress intensity
factor, and K2 represents the shearing-mode stress intensity factor.

Eq. (B.11) can be rewritten as

K ¼Al2 þAlþ lbAþ lcA (B.12)

Combining Eqs. (B.11) and (B.12), we get

A¼ ð1þ cÞK � ðlþ bÞK
lð1þ cÞð1þ cÞ � lðlþ bÞ2

(B.13)

Substituting Eq. (B.13) into the first equation of Eq. (B.9), the
stress component on the stratigraphic interface can be derived

sq1 þ itrq1 ¼
rl�1e

iðl�1Þp
2

ðlþ bÞ2 � ð1þ cÞð1þ cÞ

�
(
K
h
l2 � b2 þ ð1þ cÞe�ilp þ cð1þ cÞ

i
þK
h
� ðlþ bÞe�ilp � lð1þ 2cÞ þ b

i
)

(B.14)
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