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a b s t r a c t

Layered double hydroxide (LDH) with special layered structure has been proved to have excellent hole
transport capacity and good stability. Herein, we report a high efficient composite photocatalyst of CoAl-
LDH and BiPO4 prepared by hydrothermal and chemical adsorption (denoted as CoAl-LDH/BiPO4). Phenol
can be entirely degraded by 1% CoAl-LDH/BiPO4 under 30 min ultraviolet (UV) light irradiation, and the
degradation rate constants k are 3 times and 39 times higher than that of pure BiPO4 and CoAl-LDH,
respectively. The enhanced photocatalytic activity can be attributed to effective holes transfer from
BiPO4 to CoAl-LDH, which hinders the recombination of photogenerated charge carriers. In addition, the
combination of BiPO4 and CoAl-LDH avoids the agglomeration of BiPO4 and improves the stability of
BiPO4. Active species capture experiments indicate that superoxide radicals ($O2

�) are the main active
species responsible for the degradation of phenol. This work provides technical approaches and research
ideas for solving the photogenerated charge carrier recombination problem of photocatalyst.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

With the increase of world population and the development of
industry, the environmental pollution is becoming more serious
(Naciri et al., 2020; Gao et al., 2019; Bacha et al., 2019; Shekofteh
et al., 2018; Zheng et al., 2010). In recent years, photocatalytic
oxidation technology has been studied in the field of environment
because of its high mineralization ability and no secondary pollu-
tion (Wang et al., 2020; Shi et al., 2020; Pellegrino et al., 2020; Yu
et al., 2018; Chen et al., 2020; Chong et al., 2010). As a new pho-
tocatalyst, BiPO4 possesses stable, nontoxic and robust oxidation
ability, and its photocatalytic activity is better than TiO2 (P25),
which is expected to be used in water treatment (Di et al., 2017; Yi
et al., 2019). Moreover, BiPO4 shows excellent activity in degrada-
tion of various organic pollutants of dyes, phenols, benzenes, drugs,
and polystyrene films under UV light (Liu et al., 2013; Zou et al.,
2017; Guo et al., 2018). However, BiPO4 also has disadvantages,
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such as wide bandgap (Eg ¼ 3.8 eV), high charge recombination
rate, and low quantum efficiency (Pan and Zhu, 2015; Vadivel et al.,
2016). Therefore, improving the photogenerated charge separation
efficiency of BiPO4 has become the focus of researchers. Many
methods have been employed to enhance the photocatalytic per-
formance of BiPO4, for instance, doping (Huang et al., 2013; Wang
et al., 2018), heterojunction construction (Su et al., 2018; Ding
et al., 2018; Cao et al., 2013; Mu et al., 2021) and surface hybridi-
zation (Wang et al., 2021).

Layered double hydroxides (LDHs) are a kind of two-
dimensional anionic clay composed of the main layer of positive
charge and the exchangeable intermediate anions (Wang and
O'hare, 2012; Fang and Evana, 2014). Owing to their unique
layered structure, LDHs can promote the transport of photo-
generated carriers while avoiding nanoparticles agglomeration
(Kumar et al., 2017; Dou et al., 2015; Gong and Dai, 2015; Zeng et al.,
2020; Wan and Surendar, 2019). Compared with MgAl-LDH and
ZnAl-LDH, CoAl-LDH canmeet the thermodynamic requirements of
generating free radicals and is an efficient photocatalyst for
degradation of pollutants (Kumar et al., 2017). Santosh Kumar and
co-workers prepared P25@CoAl-LDH nanocomposites for photo-
catalytic reduction of CO2. P25 and CoAl-LDH formed a type II
heterojunction, extending the utilization of the solar spectrum of
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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P25 (Santosh et al., 2017). Moreover, our group prepared NiFe-LDH/
Bi2WO6 nanosheet arrays electrode by hydrothermal and electro-
chemical deposition methods and achieved excellent activity
(Wang et al., 2021). Inspired by the previous work, the composite of
BiPO4 photocatalyst and CoAl-LDH with excellent hole transfer
property may avoid the agglomeration of BiPO4, enhancing the
photocatalytic activity (Snehaprava et al., 2019; Lia et al., 2017;
Santosh et al., 2018).

In this work, we successfully prepared CoAl-LDH/BiPO4 by
chemical adsorption. The ratio of CoAl-LDH and preparation tem-
perature were investigated, to obtain an optimal composite cata-
lyst. Phenol was chosen as a model pollutant to investigate the
photocatalytic activity of CoAl-LDH/BiPO4. Phenol can be
completely degraded by 1% CoAl-LDH/BiPO4 in 30 min, and the
degradation rate constants k are 3 times and 39 times higher than
that of pure BiPO4 and CoAl-LDH, respectively. The structure of
CoAl-LDH/BiPO4 and the mechanism of the improved photo-
catalytic performance were systematically investigated.
2. Experimental section

The Experimental Section details are shown in the Supporting
Information.
3. Results and discussion

3.1. Catalysts Characterization

The crystal structure of BiPO4, CoAl-LDH and 1% CoAl-LDH/BiPO4
are measured by XRD (Fig. 1(a)). All diffraction peaks show
monoclinic monazite phase of BiPO4 (JCPDS No 80e0209) without
any impurity phase. For pure CoAl-LDH, the typical diffraction
peaks at 2q ¼ 12.18�, 24.31�, 35.96�, 39.15� and 47.22� can be
indexed to the (003), (006), (009), (012) and (018) (JCPDS No. 51-
0045). No impurity peaks are found in the 1% CoAl-LDH/BiPO4,
indicating that CoAl-LDH does not change the crystal structure of
BiPO4. The Raman spectra of samples are shown in Fig. S1. BiPO4
presents sevenmajor Ramanpeaks which are assigned to first order
BieO stretching vibration (220 and 276 cm�1), n1 symmetric
stretching (970 cm�1), n2 bending vibration (400 cm�1), n3 asym-
metric stretching (1040 cm�1) and n4 stretching vibration
(550 cm�1) of PO4

3� (Maisang et al., 2018). The Raman spectra of
BiPO4 is unchanged after CoAl-LDH combination. Moreover, no
CoAl-LDH peak can be observed in 1% CoAl-LDH/BiPO4 may be due
Fig. 1. a XRD patterns of BiPO4, CoAl-LDH and 1% CoAl-LDH/BiPO4; b UVeVis DRS spectra
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to the low content of CoAl-LDH. The optical properties of BiPO4,
CoAl-LDH and 1% CoAl-LDH/BiPO4 were characterized by UVeVis
DRS (Fig. 1(b)). The band gaps of samples were listed in Table S1.
Mechanical mixture composite catalyst (denoted as 1% CoAl-LDH/
BiPO4 mechanical mixture) was prepared for comparison. The
bandgap of BiPO4 is about 3.85 eV, which can only absorb ultravi-
olet light. The CoAl-LDH absorbs visible light in 400e500 nm.
Compared with CoAl-LDH, the light absorption of 1% CoAl-LDH/
BiPO4 increases in the ultraviolet region.

The morphology of BiPO4, CoAl-LDH and 1% CoAl-LDH/BiPO4 are
investigated by SEM and HRTEM images (Fig. 2). As can be noticed
from SEM images (Figs. S2(a and b)), the BiPO4 presents a nanorod
morphology with a length of 500e1000 nm. Subsequently, CoAl-
LDH is a multilayer sheet structure with an average diameter of
about 2 mm (Figs. S2(c and d)). It is found that BiPO4 is dispersed on
the CoAl-LDH sheet structure, indicating the two are successfully
combined (Fig. S2 (e, f)). To further observe the internal structure of
the samples, the HRTEM images of BiPO4, CoAl-LDH and 1% CoAl-
LDH/BiPO4 are shown in Fig. 2. The lattice spacing of BiPO4 is
0.328 nm, which corresponds to the (200) plane of monoclinic
monazite BiPO4 (Fig. 2(a and b)) (Zhu et al., 2017; Shi et al., 2018).
The lattice spacing of CoAl-LDH is 0.27 nm, which can be attributed
to (012) plane (Fig. 2(c)) (Dou et al., 2015). Fig. 2(d) further illus-
trates the uniform distribution of BiPO4 on the surface of CoAl-LDH
sheets. The specific surface area and pore size distribution data of
the three catalysts are shown in Table S2. The specific surface area
of BiPO4 is unchanged after CoAl-LDH combination (Fig. S3).
3.2. Photocatalytic performance

The photocatalytic activity of BiPO4, CoAl-LDH, various CoAl-
LDH/BiPO4 is appraised by photocatalytic degradation of phenol
under UV light, as shown in Fig. 3. The apparent rate constant k of
the CoAl-LDH/BiPO4 presents a volcanic appearance. 1% CoAl-LDH/
BiPO4 possesses optimal photocatalytic performance, and the re-
action rate constant k of its degradation of phenol reaches
0.17134min�1, which is about 3 folds higher than that of pure BiPO4
(0.06194 min�1) (Fig. 3(a and b)). The improved activity may be
contributed to the more efficient light utilization and the higher
separation efficiency of photogenerated electrons and holes of
CoAl-LDH/BiPO4. However, it is found that the activity of 5% CoAl-
LDH/BiPO4 and 10% CoAl-LDH/BiPO4 is lower than that of pure
BiPO4. This may be due to the high shading effect of CoAl-LDH
which inhibits the UV light absorption of BiPO4, resulting in the
of BiPO4, CoAl-LDH, 1% CoAl-LDH/BiPO4 and 1% CoAl-LDH/BiPO4 mechanical mixture.



Fig. 2. HRTEM images of a, b BiPO4; c CoAl-LDH; d 1% CoAl-LDH/BiPO4.
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decrease of BiPO4 activity (Wang et al., 2011; Zhang et al., 2010). The
effects of various preparation temperatures of CoAl-LDH/BiPO4 on
the degradation activity were also investigated, and the results
were shown in Fig. 3(c and d). It is found that the optimal prepa-
ration temperatures is 50 �C.

The stability and reusability are important for the heteroge-
neous solid catalysts. The reusability of the 1% CoAl-LDH/BiPO4 is
evaluated by the three successive degradation cycles. As depicted in
Fig. 3(e), the activity of 1% CoAl-LDH/BiPO4 does not decrease
significantly after three cycles. The above results show that the as-
prepared 1% CoAl-LDH/BiPO4 has excellent stability and reusability.

3.3. Mechanism of photocatalytic activity enhancement

To reveal the synergistic effect of CoAl-LDH and BiPO4, a series of
photocurrent tests are carried out on BiPO4, CoAl-LDH and CoAl-
LDH/BiPO4. As shown in Fig. 4(a), 1% CoAl-LDH/BiPO4 shows the
highest photocurrent density under UV irradiation. To further
prove the above results, electrochemical impedance spectroscopy
(EIS) under UV irradiation is tested (Fig. 4(b)). The impedance
radius of prepared samples under light condition are smaller than
that under dark condition, suggesting that electrons and holes can
be effectively separated under UV light irradiation (Chowdhury
et al., 2018). The impedance radius of 1% CoAl-LDH/BiPO4 is the
smallest, indicating that the 1% CoAl-LDH/BiPO4 has the optimal
electron-hole separation efficiency. The above results are consistent
with the results of phenol degradation, indicating that the syner-
gistic effect between BiPO4 and CoAl-LDH improves the separation
efficiency of charge carriers.

XPS was used to investigate the chemical state of BiPO4, CoAl-
LDH and 1% CoAl-LDH/BiPO4 (Fig. 5). As shown in Figs. 5(a), 1%
CoAl-LDH/BiPO4 contains Bi, P, Co, Al, C and O elements. The Bi 4f
spectra (Fig. 5(b)) can be fitted to two discrete peaks at 159.5 eV and
164.8 eV, which are responded to Bi 4f 7/2 and Bi 4f 5/2 of [Bi2O2]2þ,
indicating that the valence state of Bi atom is Bi3þ (Ji et al., 2009;
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Jiang et al., 2011; Diego et al., 2015). The Co 2p spectra (Fig. 5(c)) can
be deconvoluted into two peaks at 781.2 eV and 796.6 eV, corre-
sponding to Co 2p 3/2 and Co 2p 1/2, respectively. Moreover, the two
companion peaks at 786.1 eV and 802.6 eV indicate the existence of
highly spun bivalent Co2þ (Dou et al., 2015). After BiPO4 and CoAl-
LDH are compounded, the two Co 2p characteristic peaks shift
positively to 786.7 eV and 805.5 eV, while the two Bi 4f charac-
teristic peaks shift negatively to 159.1 eV and 164.1 eV, respectively.
The increase of electron density of BiPO4 and the decrease of
electron density of CoAl-LDH can be attributed to the chemical
interaction between BiPO4 and CoAl-LDH, indicating the electron
transfer from CoAl-LDH to BiPO4 and the hole transfer from BiPO4
to CoAl-LDH, thus improving the photogenerated charge separation
efficiency of BiPO4. For P 2p spectra (Fig. 5(d)), the peak at 132.9 eV
is attributed to the pentavalent phosphorus-oxidation state (P5þ) of
PeO bond in PO4

3� (Guo et al., 2018).
To further verify the photocatalytic degradation mechanism of

BiPO4, CoAl-LDH and 1% CoAl-LDH/BiPO4, it is necessary to conduct
active species capture experiments, as shown in Fig. 6. The ben-
zoquinone (BQ), methanol (CH3OH) and tert-butyl alcohol (t-BuOH)
are used to trap $O2

�, holes and $OH, respectively (Zhu et al., 2017).
As shown in Fig. 6(a and b), the main active species of BiPO4 and
CoAl-LDH degrading phenol are $O2

�. It can be noted from Fig. 6 (c)
that after combined with CoAl-LDH, the active species in the
degradation process of BiPO4 is unchanged.

To sum up, the photocatalytic degradation mechanism of CoAl-
LDH/BiPO4 is speculated as follows (Fig. 7). Photogenerated elec-
trons and holes are generated in CoAl-LDH/BiPO4 under UV light
irradiation. Photogenerated holes of BiPO4 can quickly migrate to
CoAl-LDH, thus improving the photogenerated charge separation
efficiency. Moreover, CoAl-LDH can improve the reaction kinetics,
resulting in an improved photocatalytic degradation activity (Wang
and O'hare, 2012; Fang and Evana, 2014). Photogenerated electrons
react with O2 in the solution to form $O2

�, which is used to degrade
pollutants in wastewater. Photogenerated holes transfer to the



Fig. 3. Photocatalytic activities a and apparent rate constant k b of various CoAl-LDH/BiPO4 composites; photocatalytic activities c and apparent rate constant k d of Co Al-LDH/BiPO4

composites synthesized under different temperatures; e the degradation of phenol by 1% CoAl-LDH/BiPO4 within successive three cycles (Experimental conditions: l ¼ 254 nm,
[phenol] ¼ 5 ppm, [catalyst] ¼ 0.25 g/L, pH ¼ 7, T ¼ 25 �C).
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Fig. 4. a Photocurrent measurements of BiPO4, CoAl-LDH and 1% CoAl-LDH/BiPO4 under UV light radiation (l ¼ 254 nm); b EIS spectra of BiPO4, CoAl-LDH and 1% CoAl-LDH/BiPO4 in
dark or under UV light radiation (l ¼ 254 nm).

Fig. 5. a XPS spectra of BiPO4, CoAl-LDH and 1% CoAl-LDH/BiPO4; b Bi 4f spectra; c Co 2p spectra; d P 2p spectra.
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Fig. 6. Comparison of the photocatalytic performances of a BiPO4, b CoAl-LDH and c 1% CoAl-LDH/BiPO4 for the degradation of phenol without or with the addition of BQ, t-BuOH,
or CH3OH under UV light radiation (l ¼ 254 nm).

Fig. 7. The mechanism illustration of photocatalytic degradation of organics over CoAl-LDH/BiPO4.
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catalyst surface and react directly with pollutants. Therefore, in this
system, the effective separation and transfer of photogenerated
electron and hole pairs are the main reason for improving the ac-
tivity of CoAl-LDH/BiPO4.
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4. Conclusion

We successfully synthesize high efficiency CoAl-LDH/BiPO4 by
hydrothermal and chemical adsorption. 1% CoAl-LDH/BiPO4 shows
significantly improved photocatalytic activity for phenol
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degradation, which is about 3 times and 39 times higher than that
of pure BiPO4 and CoAl-LDH, respectively. In the degradation pro-
cess, the main active species are $O2

�. In addition, 1% CoAl-LDH/
BiPO4 has superior stability and reusability in successive degrada-
tion cycles. Its excellent performance can be attributed to the rapid
migration of photogenerated holes from BiPO4 to CoAl-LDH, which
improves the separation efficiency of photogenerated electron and
hole pairs. This method is low-cost and easy to operate, which
provides a new way to prepare BiPO4 photocatalyst with high
photocatalytic activity.
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