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a b s t r a c t

The liquid loading is one of the most frequently encountered phenomena in the transportation of gas
pipeline, reducing the transmission efficiency and threatening the flow assurance. However, most of the
traditional mechanism models are semi-empirical models, and have to be resolved under different
working conditions with complex calculation process. The development of big data technology and
artificial intelligence provides the possibility to establish data-driven models. This paper aims to
establish a liquid loading prediction model for natural gas pipeline with high generalization ability based
on machine learning. First, according to the characteristics of actual gas pipeline, a variety of reasonable
combinations of working conditions such as different gas velocity, pipe diameters, water contents and
outlet pressures were set, and multiple undulating pipeline topography with different elevation differ-
ences was established. Then a large number of simulations were performed by simulator OLGA to obtain
the data required for machine learning. After data preprocessing, six supervised learning algorithms,
including support vector machine (SVM), decision tree (DT), random forest (RF), artificial neural network
(ANN), plain Bayesian classification (NBC), and K nearest neighbor algorithm (KNN), were compared to
evaluate the performance of liquid loading prediction. Finally, the RF and KNN with better performance
were selected for parameter tuning and then used to the actual pipeline for liquid loading location
prediction. Compared with OLGA simulation, the established data-driven model not only improves
calculation efficiency and reduces workload, but also can provide technical support for gas pipeline flow
assurance.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Natural gas contains a small amount of saturated water vapor
changing with temperature and pressure during transportation in
pipeline (Fan et al., 2021; Hong et al., 2020b). As the temperature
drops, water vapor will condense out to form liquid water. Due to
the large terrain undulation in mountainous areas, it's easy for
), xpli126@126.com (X.-P. Li),

y Elsevier B.V. on behalf of KeAi Co
liquid water to gather in some sections of the pipeline network
(Hong et al., 2019), which will not only increase the friction in the
pipeline, but also hinder gas flow, reduce gas transmission effi-
ciency, and affect the economy of the gathering pipeline network
(Shi et al., 2021). In addition, the gas-liquid two-phase flow is also
prone to form slug flow, which can trigger fluctuations of pressure
and flow in the pipeline and damage the pipeline (He et al., 2019).
Therefore, it's essential to study the law of liquid loading in un-
dulate pipelines and predict the situation of liquid loading for
reducing production costs and ensuring the safety of
transportation.

The root of liquid loading in the pipeline is gas-liquid two-phase
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flow. In the two-phase flow, there are both external forces between
the fluid and the inner wall of the pipe, as well as interaction forces
between the two-phase interface (Chen et al., 2021a; Shi et al.,
2021). The mechanical relationship of external forces and interac-
tion forces can be affected by the flow pattern (Izwan Ismail et al.,
2015). The flow pattern of multiphase flow is changeable, which is
closely related to problems such as the energy loss of the fluid in
the tube (He et al., 2018). The early scholars mainly studied the flow
patterns experimentally and tried to propose generalized flow
pattern diagrams (Khaledi et al., 2014; Ong and Thome, 2011). As
the research progresses, some scholars began to use mathematical
models to explore the relationship between various multiphase
flow parameters and flow pattern changes, and established
different flow patterns judgment criteria (Barnea, 1987; Taitel and
Dukler, 1976). The flow patterns discrimination is the prerequisite
for calculating the liquid holdup and pressure drop. For the study of
liquid holdup, many scholars proposed models and related for-
mulas based on empirical and semi-empirical formulas (Zhang
et al., 2004). For the study of pressure drop, many scholars
derived pressure drop calculation formulas applicable to different
pipeline structures based on energy conservation by considering
pipeline undulation and downhill pipeline energy recovery
(Rodrigues et al., 2018). In addition, some scholars employed nu-
merical simulation methods to explore the law of liquid loading
(Ming et al., 2018; Vieira et al., 2021), and analyzed in detail the
factors that affect the generation of liquid loading during trans-
portation (Abubakar et al., 2018; Kesana et al., 2018; Rodrigues
et al., 2020).

The above researches revealed the law of liquid loading from
different aspects, analyzed the changes of pressure drop, liquid
holdup and other indicators with different parameters such as flow
velocity, pipe diameter, water content, and outlet pressure, and
established prediction models such as the critical inclination angle
of the pipeline (Liang et al., 2021; Salubi et al., 2021). However,
most of the single models do not consider the cross-effects of
multiple factors, so the application range is limited, the conclusions
obtained are not strong in regularity, and the accuracy of pipeline
liquid load prediction is still not good enough. The complexity of
the physical flow process makes it particularly difficult to establish
the mathematical model for the liquid loading process. Unlike a
single model, the commercial simulator OLGA combines a variety of
relational expressions to realize the coverage of multiple working
conditions, and the results obtained have been tested in practice
that can be used in engineering applications (Shi et al., 2020).
Nevertheless, OLGA only simulates specific working conditions and
requires separate recalculations for different working conditions
each time (Kanin et al., 2019). In fact, the operating parameters and
pipeline parameters are complex and diverse in engineering prac-
tice. If numerical simulation modeling such as OLGA is required
every time, the workload is large and the efficiency is low. There-
fore, it is necessary to develop a new method that can quickly
predict liquid loading.

The development of big data technology and artificial intelli-
gence provides the possibility to establish data-driven models.
Machine learning (ML) methods are widely used in various com-
plex engineering problems in many fields. Qi et al. (2018) used
artificial neural network (ANN) and particle swarm algorithm to
predict the unconfined compressive strength of cemented paste
backfill. The data was obtained through experiments, and the
minimum mean square error (MSE) and correlation coefficient (R)
were used to evaluate the performance of the optimal ANN model
on the training set and the test set. Kanin et al. (2019) proposed a
ML algorithm for steady-state simulation of multiphase pipelines
based on laboratory data. Three models were trained using various
ML algorithms on representative laboratory datasets selected from
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the open literature. The first model was used to predict the liquid
holdup, the second model was used to determine the flow pattern,
and the third model was used to estimate the pressure gradient. It
has been verified that the models can be extended from the labo-
ratory to field conditions. Mask et al. (2019) established a new
model with the help of ML by dimensional analysis of more than
8000 laboratory multiphase flow tests. The test results show that
the flow pattern is affected by the fluid properties, the field flow
rate of fluids, the geometry and mechanical properties of the flow
conduit. Moreover, ML technology has significantly improved the
prediction accuracy of dimensionless variables compared with
semi-analytical models. Lin et al. (2020) reported a method for
predicting the flow patterns of upwardly inclined pipes through
deep learning neural networks. The data came from experimental
data sets reported in the literature, and the surface velocity and
inclination of single phase were selected as input parameters to
identify the flow pattern. Compared with the classic flow pattern
diagram, the effectiveness of the predictionmodel was verified. The
above researches not only have promoted the continuous devel-
opment and practical application of ML but also cover various fields
and provide a new idea and method for the study of liquid loading.

However, to the best of our knowledge, there are few studies on
the use of ML in liquid loading prediction. Therefore, on the basis of
numerical simulation by using the simulator, this paper proposed a
ML method to establish a natural gas pipeline liquid loading pre-
diction model with high generalization ability to predict pipeline
liquid loading. First, according to the characteristics of actual gas
pipeline, a variety of reasonable combinations of working condi-
tions such as different gas velocities, pipe diameters, water con-
tents and outlet pressures were set, and multiple undulating
pipeline topography with different elevation differences was
established. Then a large number of simulations were performed by
simulator OLGA to obtain the data required for machine learning.
After data preprocessing, six supervised learning algorithms,
including support vector machine (SVM), decision tree (DT),
random forest (RF), artificial neural network (ANN), plain Bayesian
classification (NBC), and K nearest neighbor algorithm (KNN), were
compared to evaluate the performance of liquid loading prediction.
Finally, the RF and KNN with better performance were selected to
optimize the parameters and applied to the actual pipeline for
liquid loading location prediction.

The paper is organized as follows: Section 2 describes the pro-
posed liquid loading prediction method of gas pipeline based on
machine learning, including data collection, data preprocessing,
machine learning algorithms and model performance evaluation.
The performance of six different Machine Learning algorithms is
compared and analyzed in Section 3. Based on the performance, RF
and KNN are selected to determine the liquid loading of gas pipe-
line. Finally, conclusions are drawn in Section 4.

2. Methodology

The proposed methodology based on ML follows the following
five steps: data collection, data preprocessing and partitioning,
model selection, parameter tuning and prediction, model evalua-
tion and visual analysis, as shown in Fig. 1.

2.1. Data collection

In the research of pipeline liquid loading, the description of
topography has always been a difficult problem. The inclination,
length and elevation of pipeline laying can affect the generation of
liquid loading (He et al., 2018; Ming et al., 2018). As shown in Fig. 2,
for the upward dipping section of the pipeline, the liquid layer has a
tendency to move to the lower part of the pipeline due to the



Fig. 1. Flow chart of prediction method for liquid loading based on machine learning.

Fig. 2. Schematic diagram of fluid loading in natural gas undulating pipeline.
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gravity after the liquid is completely flat on the upward dipping
section of the pipeline; on the other hand, the pressure drop in-
creases, as the gas expands, the flow rate increases, so the slip ratio
between the gas and liquid phases increases, which will reduce the
liquid carrying capacity of the gas phase, resulting in a tendency for
the liquid phase to move to the low part, thereby forming an
accumulation of liquid at the low point of the pipeline. In the
downward-dip section of the pipeline, the liquid phase flows
downward under the gravity, while the flow rate of the gas phase
decreases under the action of buoyancy, which will reduce the slip
ratio between the two phases and increase the liquid-carrying ca-
pacity of the gas phase. Therefore, there will not be fluid accumu-
lation in the downdip section and the liquid loading phenomenon
usually occurs in the climbing section of the pipeline, so the
topography of the pipeline in this paper is characterized by the
combination of the inclination angle and themileage of the upward
pipe.

In this paper, the data needed for ML is obtained by OLGA
simulator which has been validated by many scholars and has been
widely used in the numerical simulation of multiphase flow. 270
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groups of three-stage undulating pipeline examples, as shown in
Fig. 3-a and Fig. 3-b, were designed by OLGA simulation as a part of
the data set. Meanwhile, because liquid loading usually occurs in
the upward pipe, in order to predict the situation of liquid loading
in the condition of different pipeline inclination angles, 1440 sets of
single undulating pipeline terrains with various upward pipe
inclination a and mileage L were created by OLGA simulation, as
shown in Fig. 3-c. It can be considered that the inclination angle a
and mileage L of the second section of the pipeline and above are 0.
The pipeline material is PE, the wall roughness is 10 mm, the total
heat transfer coefficient is 1.75 W/m2$�C, and the pipeline inlet
temperature is 10 �C. The specific parameter settings are shown in
Tables 1e3. It should be noted that the gas pressure range in Table 1
and the components in Table 3 are consistent with the field. Most of
the flow patterns in theML data set are stratified flow. However, the
flow pattern, like the liquid loading, is the output result under the
complex relationship of many factors, such as pipe diameter, gas-
liquid velocity, pipe inclination and so on. In addition, there are
many different ways to define the flow pattern, and the same
phenomenon can get different flow patterns according to different
division methods. Therefore, the flow pattern is not used as an
input parameter of the model. With the same mass flow rate but
different pipe diameters, the gas velocity will be different, and the
liquid-carrying capacity is definitely different. Different liquid car-
rying capacity will affect the results of liquid loading, so gas velocity
is chosen instead of mass flow rate.

Based on the OLGA simulation results, “whether it accumulates
liquid” was taken as the target value. If liquid loading occurs, it is
mapped to the value of “1”, otherwise “0”. A CSV file was created
and read into Python to obtain the characteristic attributes
including setting parameters and target values. The distribution of
each characteristic attribute can be obtained from matrix scatter
diagram shown in Fig. 4. The diagonal line shows histograms, and



Fig. 3. Schematic diagram of pipeline, (a) three-stage undulating with terrain rising, (b) three-stage undulating with terrain decreasing, (c) single-stage undulating.

Table 1
Parameter setting of liquid loading numerical simulation for data collection.

Parameter Setting range

Outlet pressure (p), MPa 0.04, 0.06, 0.08, 0.1, 0.12
Gas saturated water content (w) 0.5%, 0.8%, 1.1%
Gas velocity (V), m/s 10, 15, 20, 25
Pipe diameter (d) DN100, DN150, DN200
Inclination angle (a) 5e50� , take a value every 5�

Mileage of upward inclined pipe (L), m 200, 500, 800
Elevation (h) Calculated according to inclination angle and updip pipe mileage, as shown in Table 2

Table 2
Pipeline elevation data.

Inclination, � Mileage, m Elevation, m Inclination, � Mileage, m Elevation, m

5 200 17.50 20 500 181.99
5 500 43.74 20 800 291.18
5 800 69.99 25 200 93.26
10 200 35.27 25 500 233.15
10 500 88.16 30 200 115.47
10 800 141.06 30 500 288.68
15 200 53.59 35 200 140.04
15 500 133.97 40 200 167.82
15 800 214.36 45 200 200.00
20 200 72.79 50 200 238.35

Table 3
Gas composition parameter.

Composition CH4 C2H6 CO2 N2 Total

Volume fraction, % 99.02 0.01 0.26 0.71 100
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the off-diagonal line shows scatter plots. Specifically, the diagonal
part represents the distribution of the i-th feature, the x-axis is the
value of the feature, and the y-axis is the number of occurrences of
the feature's value, thus representing the density estimate of the i-
th feature. The distribution of gas flow velocity, pipe inner
3007
diameter, water content, outlet pressure, inclination angle of each
section of the upward pipe and the corresponding mileage of the
upward pipe are shown from top to bottom. The last one in the
diagonal part is whether it accumulates liquid, where “0”means no
liquid loading, and “1” means liquid loading. A total of 1710 groups
of samples, of which the number of samples without liquid loading
was 574, and the number of samples with liquid loading was 1136,
with a ratio of about 1:2. The off-diagonal part of the i-th row and j-
th column represents the scatter plot of the i-th feature and the j-th
feature. For example, the second row and the first column represent
the parameter combination of gas velocity and pipe diameter. The
velocity includes 10 m/s, 15 m/s, 20 m/s, and 25 m/s, and the pipe



Fig. 4. Matrix scatter diagram of all attribute.
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diameter includes DN100, DN150, and DN200. Since this data set is
set according to certain rules, the distribution is relatively regular.
2.2. Data preprocessing

The data in this paper are produced from OLGA simulation and
are clean. However, measurement noise is inevitable in practice,
direct use of low-quality data for model training will lead to low-
quality prediction results. Therefore, the influence of noise data
should be identified and reduced through data cleaning. Since the
dimensions and units of each attribute are different, it needs to be
standardized. Z-Score standardization (Finch and Beck, 2011) is
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employed which converts the mean of the original data into 0 and
the standard deviation into 1. The calculation formula is as shown
in formula (1).

x* ¼ x� x
s

(1)

where x is the observed value, x is the overall average, and s is the
overall standard deviation.

The datawas divided into a training set and a test set with a ratio
of 8:2 using the hold-out. Set the parameter stratify ¼ y, that is,
allocate data according to the proportion of each category in the



Table 4
Data set division results.

Data set Category Quantity Percentage of this category in the sample Category 0: Category 1

Training set 0 459 79.97% 1:2
1 909 80.02%

Test set 0 115 20.03% 1:2
1 227 19.98%
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original data label y, so that the proportion of each category data in
the training set and the test set were the same as the original data
set. The final division result is shown in Table 4 where category
0 means without liquid loading while category 1 means liquid
loading.
2.3. Machine learning algorithms

The goal of this paper is to predict the liquid loading of gas
pipeline by train the model through a large amount of known data.
Therefore, the form of supervised learning was chosen. The con-
cepts and principles of six commonly used supervised learning
algorithms are shown in Table 5.

Random forest (RF) is a combination of Bootstrap aggregating
algorithm and decision tree, which integrates multiple classifiers
into a whole. The basic concept of a RF is to independently build
several decision trees on random subsets of the original training
dataset. The schematic diagram of RF is shown in Fig. 5, and it
becomes a forest style vividly. Firstly, the bootstrap method is used
to randomly select k rounds of samples from the data set with
replacement to obtain k training sets; then, randomly extract a part
of the feature attributes from each training set and apply them to
node splitting, construct a decision tree, and finally construct k
decisions tree; finally, the best classification is selected by “voting”.

K-nearest neighbor algorithm is a typical supervised learning
algorithm. In fact, the samples to be predicted are put into the data
set, and K sample data closest to the sample to be predicted are
obtained from the training set; the target attribute value of the
current sample to be predicted is predicted according to the
Table 5
Classification of supervised learning algorithms.

Algorithms Concept and principle A

Support Vector Machines
(SVM) (Lee, 2021; Zhang
et al., 2021)

The principle of this method is to use the line or the
surface as the decision boundary to classify the data
binary.

S

Decision tree (DT) (W. Huo
et al., 2021; Yuvaraj et al.,
2021)

The feature attribute is used as the dividing node, and
the sample is divided layer by layer from top to bottom,
until the sample classification is obtained.

C
fe
r
a

Random forest (RF) (Y. Huo
et al., 2021; Tiwary et al.,
2020)

Algorithm integrated by multiple decision trees. S

Artificial neural networks
(ANN) (Shi et al., 2021; Si
et al., 2021)

A mathematical model based on biological neural
networks.

S
a
a

Naive Bayes Classification
(NBC) (Andrejiova and
Grincova, 2018;
Khajenezhad et al., 2021)

Based on the knowledge of probability statistics,
calculate the probability that the sample to be tested
belongs to each category, and use the category with the
highest probability as the category of this sample.

S
p

K nearest neighbor algorithm
(KNN) (Hashemizadeh
et al., 2021)

Set a reasonable K value, calculate the distance
between the sample to be tested and the training
sample, and get the K samples closest to it. The
category with the highest frequency is the sample
category to be tested.

T
a

3009
obtained K sample data. In a feature space, a sample also belongs to
a class if most of its K-nearest neighbors belong to that class, as
shown in Fig. 6. It can be used in both classification applications and
regression applications. In classification prediction, the majority
votingmethod is generally used; while in regression prediction, the
average method is generally used. The algorithm is described as
follows: 1) calculate the distance between the test data and each
training data; 2) Sort according to the increasing relationship of
distance; 3) Select the k points with the smallest distance; 4)
Determine the occurrence frequency of the category where the first
K points are located; 5) Return the category with the highest fre-
quency in the first K points as the prediction classification of test
data.

2.4. Model performance evaluation

The six algorithms in Table 5 are all available for classification,
and the accuracy of different algorithms is evaluated by following
formula on the same data set to select the most suitable algorithm.

A¼ TP þ TN
TP þ TN þ FP þ FN

(2)

where TP stands for true positive, TN stands for true negative, FP
stands for false positive, FN stands for false negative.

To reduce the occasionality of calculation and the impact of data
partition, the k-fold cross-validation method (Saud et al., 2020) was
used to calculate themodel accuracy. As shown in Fig. 7, the data set
was divided equally into k pieces, and one of themwas taken as the
test set each time, the remaining was used as the training set.
dvantage Disadvantage Application
scenario

trong generalization ability It is difficult to solve when the
sample size is large; it is not
suitable for multi-classification
problems.

Facial recognition,
text classification,
biomedical
diagnosis, etc.

an handle irrelevant
atures; easy to get visual
esults; easy to understand
nd analyze.

Prone to overfitting Multiple
classification
problems

trong anti-jamming ability Slower execution Multiple
classification and
regression
problems

trong non-linear fitting
bility; the rules are simple
nd easy to implement.

It is difficult to understand its
internal operating mechanism.

Voice recognition,
medical treatment,
etc.

imple logic; low false
ositive rate.

The prediction effect is poor for
samples with high attribute
relevance.

Text classification,
face recognition,
etc.

he principle is simple; the
ccuracy is high.

The prediction effect is poor
when the sample categories are
not balanced.

Mail classification,
image recognition,
etc.



Fig. 5. The schematic diagram of random forest.

Fig. 6. The schematic diagram of K-nearest neighbor algorithm.

Fig. 7. Schematic diagram of

B.-Y. Hong, S.-N. Liu, X.-P. Li et al. Petroleum Science 19 (2022) 3004e3015

3010
Therefore, a total of k times of training and testing was performed,
and each time a result (usually the accuracy) that could evaluate the
model performance was obtained. The average of the k times re-
sults was used as the final result. In this paper, k ¼ 5 was taken to
obtain the mean and standard deviation of accuracy of each algo-
rithm, so as to conduct evaluation.
3. Result and discussion

3.1. Model performance comparison

The 10 variables shown in Fig. 4 were used as inputs to the above
six static models, and the output was whether it accumulates
liquid. Based on the data set and the partition method, the six su-
pervised learning algorithms were model-trained. In order to
reduce the impact of data division, the k-fold cross validation
method is used for k times of training and testing. The accuracy of
the model can be obtained by each time of calculation. The mean
and standard deviation of the accuracy of k times are the final re-
sults. In this paper, k ¼ 5 is used, and the mean and standard de-
viation of the accuracy of each algorithm are shown in Fig. 8. It can
be seen from Fig. 8 that the accuracy of RF, DT, KNN and ANN
k-fold cross-validation.



Fig. 8. Accuracy rate of each algorithm.

B.-Y. Hong, S.-N. Liu, X.-P. Li et al. Petroleum Science 19 (2022) 3004e3015
algorithms are all high. Among them, the RF model has the highest
accuracy and has the following advantages over DT. (1) The influ-
ence of outliers on model prediction is reduced. According to the
principle of RF, only part of the characteristic data is selected when
generating each tree to finally build several different DTs and obtain
multiple prediction results. Therefore, when individual outliers
appear, the influence will not be great and the over-fitting proba-
bility of the model can be reduced at the same time. (2) The ac-
curacy of the model is improved. Compared with the single DT,
there are many “choices” in RF, and the best classification can be
selected by comparing and analyzing the results of multiple DTs.
Fig. 9. Feature importance b
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Consequently, although DT is the second accurate algorithm, it can
be replaced by RF. Moreover, from the perspective of learning
methods, KNN algorithm is different from other supervised algo-
rithms. It is a “lazy” learning algorithm, that is, it does not generate
a classification or prediction model in advance for the prediction of
new samples, but carries out the model construction and the pre-
diction of unknown data at the same time. It has the advantages of
simple principle and insensitivity to abnormal points. Therefore,
based on the above analysis, the RF algorithm and KNN algorithm
can be selected for parameter tuning and then used for pipeline
liquid load prediction.
ased on Gini coefficient.



Fig. 10. Performance of RF algorithm, (a) Confusion matrix (b) ROC curve.

B.-Y. Hong, S.-N. Liu, X.-P. Li et al. Petroleum Science 19 (2022) 3004e3015
3.2. Model parameter tuning of RF and KNN

RF is the combination of Bootstrap Aggregating algorithm and
DT, which integrates multiple classifiers into a whole
(Hashemizadeh et al., 2021). The method of grid search combined
with k-fold cross validation is adopted to determine the optimal
number of classifiers (n_estimators). The optimal number of clas-
sifiers is obtained by setting the search range from 25 to 500 and
the step size to 25, so n_estimators ¼ 175 is used for training the
model. Node splitting of DT in RF requires selecting a certain feature
as the division attribute. The data set contains multiple features,
and each feature has a different contribution to each tree. Hence,
Fig. 11. AUC diagram of the KNN m
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the feature used as the partition attribute usually is selected ac-
cording to the reduction degree of Gini coefficient (Brown and
Myles, 2020; Jain et al., 2021) before and after splitting. Accord-
ing to the results of Gini coefficient, the order of feature importance
is: flow rate > inclination angle of first upper inclined pipe a1>pipe
inner diameter > water content > outlet pressure > mileage of first
upper inclined pipe L1>inclination angle of third upper inclined
pipe a3> mileage of third upper inclination pipe L3> mileage of
second upper inclination pipe L2> inclination angle of second upper
inclination pipe a2, as is shown in Fig. 9. Therefore, follow the order
of feature importance in Fig. 7 as the node splitting attribute of the
DT.
odel under different K values.



Fig. 12. Performance of KNN algorithm, (a) Confusion matrix (b) ROC curve.

Table 6
Numerical mapping of category labels.

First site of liquid loading Mapped value

No fluid accumulation 0
The first low location 1
The second low location 2
The third low location 3
The first two low locations 4
The last two low locations 5
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The trained RFmodel is applied to the test set, and the confusion
matrix of the test results is shown in Fig. 10-a, and the ROC curve is
shown in Fig. 10-b. The prediction is correct in 326 groups,
including 108 groups with no liquid loading and 218 groups with
liquid loading. There are 16 groups of incorrect predictions, among
which 7 groups of no liquid loading samples are predicted as liquid
loading and 9 groups of liquid loading samples are predicted as no
liquid loading samples. The precision, recall rate, F1 value, and
accuracy are all above 90%, and the AUC is 0.99. It can be seen that
the RF model has strong ability to recognize samples and has a
better prediction effect, so there is no need to tune other parame-
ters. In addition, the out-of-bag score of the model is 0.9598, which
indicates that the generalization ability of the model is better.

KNN is a classification that relies on distance calculation (Dong
et al., 2021; Hashemizadeh et al., 2021). In this paper, the most
widely used Euclidean distance is used to calculate the relationship
between the sample predicted and the known sample. To improve
the accuracy of the model, the cross-validation method is used to
tune the parameter n_neighbors for determining the best K value,
and the AUC values of the model under different K values are ob-
tained as shown in Fig. 11 where the AUC value is the highest when
Table 7
Classified report of RF model prediction.

Category label Precision Recall F1-score Support

0 0.73 0.94 0.82 17
1 0.92 0.85 0.88 27
2 1.00 1.00 1.00 1
3 0.00 0.00 0.00 2
4 1.00 0.83 0.91 6
5 1.00 1.00 1.00 1
Accuracy 0.85 54
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the K value is 9. Therefore, K ¼ 9 is selected for calculation.
The trained KNN model is applied to the test set, and the test

results are shown in Fig. 12-a. The prediction is correct in 314
groups, including 108 groups with no liquid loading and 206 groups
with liquid loading. There are 28 groups of incorrect predictions,
among which 7 groups of no liquid loading samples are predicted
as liquid loading and 21 groups of liquid loading samples are pre-
dicted as no liquid loading samples. The accuracy of the model is
92%, the precision, recall rate, and F1 value of the category “liquid
loading” are all above 90%, and the accuracy of the category “no
liquid loading” is slightly lower. The performance of the KNNmodel
is slightly worse than that of the RF model, but the overall pre-
dictive ability is better. The ROC curve is shown in Fig. 12-b, indi-
cating that the KNN model has a better prediction effect, with an
AUC of 0.96, and there is no need for other parameter tuning.
3.3. Model application of RF and KNN

In the natural gas gathering pipelines, the installation of con-
densers is usually adopted to discharge the liquid loading (He et al.,
2018). However, due to the complex and varied gas transportation
conditions and pipeline terrains of the multi-undulating wet gas
pipelines, the liquid loading is not always generated along the
pipeline from front to back in order, but may be generated in the
back section first (Chen et al., 2021b). With the increase of liquid
loading in the back section of pipeline, the energy loss of the
pipeline increases, resulting in liquid loading in the front section
after a certain time. Therefore, if the location of the first liquid
loading in the pipeline can be predicted and install a condenser
here, the liquid loading in other locations of the pipeline could be
avoided to a certain extent, and the liquid discharge could be
Table 8
Classified report of KNN model prediction.

Category label Precision Recall F1-score Support

0 0.77 0.87 0.85 17
1 1.00 0.85 0.92 27
2 1.00 1.00 1.00 1
3 1.00 0.50 0.67 2
4 1.00 1.00 1.00 6
5 1.00 1.00 1.00 1
Accuracy 0.91 54



Fig. 13. Comparison diagram of machine learning model prediction and OLGA simulation.
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maximized to improve the gas transmission efficiency of the
pipeline (Hong et al., 2019, 2020a).

The above two algorithms RF and KNN are used to predict the
location of the first liquid loading in the pipeline. Taking the “first
liquid loading position” as the target value, six cases are analyzed
and mapped into numerical form, as shown in Table 6.

Through the method of grid search combined with k-fold cross-
validation, the optimal number of classifiers (n_estimators) is
determined to be 450. There are 46 groups of correct predictions by
the RF model and 8 groups of wrong predictions. The accuracy of
the model and other indicators is shown in Table 7. It can be seen
from the Table 7 that the accuracy of the RF model for predicting
the location of liquid loading is 85%. Most categories have high
accuracy and recall rate. Category “3” may have lower indicators
due to insufficient learning samples, but the overall prediction
performance of the model is better.

The KNN model predicts 49 groups correctly and 5 groups
incorrectly. The classification report is shown in Table 8. The ac-
curacy of KNN model is 91%, which is higher than RF model. The
accuracy and recall rate of most categories are high, and the pre-
diction performance of the model is good.

The comparison between the prediction results of the above two
models and the OLGA results are shown in Fig.13. The red dots, dark
blue square dots, and blue-green triangle points are the results of
OLGA, RF model and KNN model, respectively. It can be seen
intuitively from the figure that the prediction results of the two
machine learning algorithms are very close to the simulation re-
sults of OLGA.
4. Conclusions

This paper aims to establish a natural gas pipeline liquid loading
predictionmodel based onmachine learning. Comparedwith OLGA
simulation, the established data-driven model not only improves
calculation efficiency and reduces workload, but also can provide
technical support for gas pipeline flow safety.

(1) The topography is characterized by the combination of the
inclination angle of the upward pipe and the mileage of the
upward pipe. Various combinations of working conditions
3014
with different flow rates, pipe diameters, water contents,
outlet pressures, pipe inclination angles, and the corre-
sponding mileages of the upward pipe are designed by OLGA
simulator to obtain a total data set of 1710 samples.

(2) The supervised learning approach is selected and the per-
formances of six different algorithms, including support
vector machine (SVM), decision tree (DT), random forest
(RF), artificial neural network (ANN), naive Bayesian classi-
fication (NBC), and K nearest neighbor algorithm (KNN) are
evaluated by the k-fold cross-validation method. Eventually,
the RF and KNN algorithms are selected by comparing the
accuracy and AUC values.

(3) After parameter tuning of RF and KNN, the accuracy, recall
rate, F1 value, and accuracy of the RF and KNN are all above
90%, and the AUC of the RF and KNN are 0.99 and 0.96,
respectively. In addition, RF and KNN are used to predict the
location of the first liquid loading in gas pipeline, and the
KNN algorithm performs better with an accuracy of 91%.

(4) Due to the lack of field data, the data in this paper is taken
from OLGA simulations, so the sample amount is limited.
Although we already have 1710 sets of data, after trying,
these data are not enough to achieve accurate prediction of
the amount of liquid loading. Machine learning methods
depend on the quality and number of data sets. Therefore, a
large amount of field data will be introduced in subsequent
research to further improve the accuracy and application
scope of the prediction model.

(5) The deviation of mechanism model calculation and the risk
of over fitting in data-driven make the dual-driven model a
more ideal solution. In future research, we will explore the
hybrid modeling based on mechanism data driven to predict
liquid loading.
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