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a b s t r a c t

The flow regimes of GLCC with horizon inlet and a vertical pipe are investigated in experiments, and the
velocities and pressure drops data labeled by the corresponding flow regimes are collected. Combined
with the flow regimes data of other GLCC positions from other literatures in existence, the gas and liquid
superficial velocities and pressure drops are used as the input of the machine learning algorithms
respectively which are applied to identify the flow regimes. The choosing of input data types takes the
availability of data for practical industry fields into consideration, and the twelve machine learning al-
gorithms are chosen from the classical and popular algorithms in the area of classification, including the
typical ensemble models, SVM, KNN, Bayesian Model and MLP. The results of flow regimes identification
show that gas and liquid superficial velocities are the ideal type of input data for the flow regimes
identification by machine learning. Most of the ensemble models can identify the flow regimes of GLCC
by gas and liquid velocities with the accuracy of 0.99 and more. For the pressure drops as the input of
each algorithm, it is not the suitable as gas and liquid velocities, and only XGBoost and Bagging Tree can
identify the GLCC flow regimes accurately. The success and confusion of each algorithm are analyzed and
explained based on the experimental phenomena of flow regimes evolution processes, the flow regimes
map, and the principles of algorithms. The applicability and feasibility of each algorithm according to
different types of data for GLCC flow regimes identification are proposed.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

The gas liquid cylindrical cyclone (GLCC) is popularly and widely
used in gas-liquid two-phase separation, especially in natural gas
fields and transportation station. Since gas-liquid separation is a
necessary part of natural gas development and transportation, the
flow regime identification of the GLCC has beenmore important for
the flow assurance. With the development of machine learning, the
clustering, classification and prediction based on the data are easier
gjj@cup.edu.cn (J.-J. Zhang).
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and more accurate to be realized. Since the characteristics of flow
regime can be represented by different kinds of data, machine
learning, which is a technology driven by data, has been combined
with multiphase flow regime identification.
1.1. Gas liquid cylindrical cyclone (GLCC)

Gas liquid cylindrical cyclone is a kind of multiphase separator
with high efficiency and compactness (Shoham and Kouba, 1998;
Kouba et al., 2006; Kulkarni and Shinde, 2016). The main structure
of GLCC consists of a vertical cylinder and tangential inlets. As the
mixture of gas and liquid enters the GLCC through the tangential
inlet, then they form a cyclone and are separated by the difference
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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of centrifugal force. The liquid phase and gas phase will exist
through the upper and downer outlets.

The researches of GLCC mainly focus on the structure and effi-
ciency optimization (Kouba et al., 1995; Arpandi et al., 1996;
Chirinos et al., 2000; Movafaghian et al., 2000; Rosa et al., 2001;
Yue et al., 2019; Moncayo et al., 2018), including how to combine
with other separator to be an integrated system (Peixoto et al.,
2005; Ju et al., 2010; Iyer et al., 2010; Mogseth, 2008; Khoi Vu
et al., 2009). The flow regimes can reflect the continuity of the
phase flowing in pipes or wells, which is important to flow assur-
ance. However, as the safety gettingmuchmore important, the flow
regime in GLCC start to be focused.
1.2. Flow regime in GLCC

The research of flow regimes of GLCC is not as advanced as the
research of flow regimes in pipes, as the flow fields of GLCC include
horizon pipe flow, vertical pipe flow, incline pipe flow and cyclone
flow. The flow regime identification includes direct method and
indirect method. The former is mainly based on the observation of
experimental phenomena or the flow regimes pictures, which is
also the main method of researching GLCC flow regimes. Based on
different section of GLCC, the flow regimes are different in defini-
tions and patterns. For the inlet of GLCC, four flow regimes are
defined as smooth flow, stratified flow, slug flow, annular flow in
the inlet, and three flow regimes included churn flow, annular flow
and ribbons flow in liquid carry-over (LCO) (Hreiz et al., 2014). For
the flow regimes in LCO, based on different GLCC structures, there
are also classification of swirling film flow, churn flow, and ribbons
flow (Xu et al., 2018), or swirling annular flow, interim flow and
complete churn flow (Wang et al., 2021). In practical fields, the inlet
of GLCC is connected to a vertical pipe, based on the effects of
vertical pipe, the inlet flow regimes are classified by continuous
flow, intermittent flow and annular flow (Yang et al., 2022). The
classifications of flow regimes of GLCC are concluded in Table 1.

Flow regimes in GLCC can reflect the flow condition, however, in
practical industry, the flow regimes cannot be observed like those
in laboratory, so the indirect method of identification is more
reliable. Therefore, it is necessary and important to identify the
flow regime indirectly for flow assurance. The flow regimes of GLCC
are identified by the liquid film thickness (Wang et al., 2021) and
pressure drops of GLCC (Yang et al., 2022). Yang et al. have applied
statistic methods to identify the flow regimes and separation
Table 1
Flow regimes in GLCC.

Researcher Year Position Classification

Hreiz et al. 2014 Inclined inlet smooth flow
stratified flow
slug flow
annular flow

LCO churn flow
annular flow
ribbons flow

Lower part bubbly vortex flow
excavated vortex flow
deeply excavated vortex flow

Xu et al. 2018 LCO swirling film flow
churn flow
ribbons flow

Wang et al. 2021 LCO swirling annular flow
interim flow
complete churn flow

Yang et al. 2022 Inlet with vertical pipe continuous flow
intermittent flow
annular flow
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efficiencies of GLCC using pressure drops, and the corresponding
relationships between flow regimes and pressure drops have also
been analyzed. The data used for flow regime identification are in
forms of flow regime photos, sensors signal, optical probe signals
et al. There is a problem to consider that some data used for flow
regimes identification are difficult or impossible to be measured in
practical fields, because the measurement equipment or sensor in
practical fields are not in the same level as those in laboratory, such
as high-speed camera, particle image velocimetry, impendence
probes and radiation equipment. As a result, when choosing the
data as the input of machine learning, it is necessary to use the data
which are easy to acquire in practical fields, such as pressure drops
or velocities.

There is still no function which can classify flow regimes clearly
or describe the boundary of flow regimes clearly, neither in the
multiphase flow of pipeline nor GLCC. Since the flow regimes
identification is important but difficult, the machine learning
technology which is driven by data has been more popular in the
flow regimes identification.

1.3. Machine learning and its application in flow regime

As a core part of Artificial Intelligence (AI), machine learning has
been developed and proceeded rapidly. The essence of machine
learning is to extract the characteristics of a group of data, then to
realize the function of clustering, classifying or predicting (Jordan
and Mitchell, 2015; Pedregosa et al., 2011; Lecun et al., 2015). The
machine learning can be classified with supervised learning and
unsupervised learning, the former type of which needs to be
labeled with the properties of each data group and the latter dose
not. Data for machine learning are mainly divided into training
group and testing group. For the flow regimes, the data which can
represent different flow regimes has been used in kinds of algor-
isms. The algorithms of machine learning applied in flow regimes
researches are shown in the mind map of Fig. 1 and the types of
data are shown in mind map of Fig. 2. It is hard to say that there is
the best algorithm to identify the flow regimes, because the accu-
racy of the algorithm is based on the data amount, the types of data
and the quality of data. The data of flow regimes can be classified
with parameter data, signal data and image data. In addition, most
of the data for the algorithm input is from the experiments, how-
ever, the experimental instruments are not equipped in all practical
environments, especially for some with high price and strict
requirement of environment. As described in section 1.2, it is
necessary and important to consider the availability of the practical
fields data which is used for machine learning. It also means the
machine learning algorithms should have higher accuracy based on
these kinds of data which is easier to acquire from practical fields.
The algorithms for the flow regimes are following the mainstream
of machine learning such as CNN, SVM et al., according to the kinds
of input data. From the researches of Fig. 1, few research compared
different algorithms of machine learning for the flow regimes
identification and explained the mechanism of machine learning
algorithms or the reasons for the suitableness of the algorithms.
From the types of data of Fig. 2, it can be concluded that most re-
searchers ignored the availability of the data from practical fields.
For the research of machine learning algorithms, the variety of the
types of input data is meaningful. However, for the application for
the engineering, the input data which cannot be acquired from the
practical fields do not make much sense.

Except for the advantages of machine learning, the most appli-
cations are still for the recommendations for customers, and
pushing the information. However, the applications of machine
learning for the industry are still in the initial phase, although some
technologies in machine learning are well developed. The main



Fig. 1. Algorithms for flow regimes identification. Liu and Bai, 2019a, 2019b, Timung and Mandal, 2013, Mi et al., 1998, Sunde, 2005, Shaban and Tavoularis, 2014, Gorban et al., 2008,
Julia et al., 2011, Paranjape et al., 2011a, 2011b, 2011c, 2012, Sawant et al., 2008, Tambouratzis and P�a zsit, 2009, Manjrekar and Dudukovic, 2019, Nnabuife et al., 2019, Tan et al.,
2007, Hobold and da Silva, 2018, Wang and Zhang, 2009, Du et al., 2018, Xu et al., 2019.

Fig. 2. Types of flow regimes data. Wang et al., 2021, Nnabuife et al., 2019, Tambouratzis and P�a zsit, 2009, Sunde, 2005, Hobold and da Silva, 2018, Du et al., 2018, Xu et al., 2019, Liu
and Bai, 2019a, 2019b, Liu et al., 2021, Sawant et al., 2008, Paranjape et al., 2012, 2011a, 2011b, 2011c, Mi et al., 1998, Julia et al., 2011, Xu et al., 2020, Tan et al., 2007, Zhai et al., 2016,
Shaban and Tavoularis, 2014, Manjrekar and Dudukovic, 2019.
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reason for that is the lack of explanation of the results of machine
learning, so it is important to explain the results of the machine
learning, experimentally or physically. For the flow regimes in
GLCC, few research applies machine learning to identify the flow
regimes because the definition of flow regimes in different posi-
tions of GLCC have not been unified and the data of flow regimes
are not enough. The gaps are concluded of the research of gas-liquid
flow regime identification using machine learning:

C The main highlights of most related researches are focused
on innovation of experimental methods such as the
improved probe method or improved imaging technique, so
as to be combined with machine learning algorithms. But
some of them focus on the explanation of the results, espe-
cially the identification confusion.

C The innovation of types of data and experimental methods
ignore the applicability for practical fields and the difficulty
of acquiring data from practical fields.

C The machine learning applied for flow regime identification
is mainly based on multiphase flow in vertical pipes, circular
pipes, and other chemical engineering equipment such as
reactors, research of GLCC flow regime identification is still in
initial phase, still less the application of machine learning.

Based on the gaps of the current researches, the differences
between this paper and other works can be concluded as 1)
comparing multiple machine learning algorithms for flow regimes
identification after unifying the flow regimes of GLCC in different
positions; 2) using the data for machine learning which can be
acquired feasibly from practical fields; 3) explain the confusion of
flow regimes identification by experimental phenomena and
mechanism of algorithms.

This paper integrates the flow regimes in different position of
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GLCC, including the inlet part with a vertical pipe from our exper-
iments, LCO part, inclined inlet part, and lower part from other
literatures, and uses the data of these flow regimes as the input of
machine learning. The classical machine learning algorithms are
applied for the GLCC flow regimes identification.

The objectives of this study are:

C to explore the feasibility and applicability at the first phase of
machine learning algorithms in GLCC flow regimes identifi-
cation, and choosing the suitable algorithms

C to research the GLCC flow regimes identification using ma-
chine learning based on the data which can be easily ac-
quired in practical fields

C to research the reasons for the success and confusion of each
algorithm in identification of flow regimes, combined with
the algorithm mechanism and experimental explanation.

and the novelties of this paper are:

C to apply machine learning for GLCC flow regimes based on
the velocities and pressure drops which can be easily ac-
quired from practical field

C explain the success and confusion of the identification re-
sults in view of experimental phenomena, the relationship
between algorithms mechanism and data types.
2. Experimental methods

2.1. Experimental setup

The experimental setup is based on the GLCC testing system of
(Yang et al., 2022). Since in the practical field, there is a vertical pipe
in front of the inlet of GLCC, a vertical pipe is set in the experiment.



Z.-M. Yang, Y.-X. He, Q. Xiang et al. Petroleum Science 20 (2023) 540e558
The whole experimental setup and key sizes are shown in Fig. 3.
With the diameter of 220 mm and height of 2345 mm, the GLCC
prototype is similar to the real one in practical fields.

Four modules are set in the system including measurement
module, power module, image module and data acquisition mod-
ule. The measurement module is for gas volume flow, liquid mass
flow and pressure measurement. Based on the parameters of fluids
and pipes, the superficial velocities of gas and liquid are calculated.
The power module is used to provide power to gas and liquid by
screw compressor and centrifugal pump. Flow regimes are recor-
ded by camera in image module. After the data are measured by
measurement module, the data acquisition module transfers and
records the signals and data. In Fig. 3, the gas flow is shown in green
and the liquid is shown in bule. All the details of the equipment and
process are shown in Table 2 and (Yang et al., 2022), and the
characteristics range for different flow patterns and fluids type are
shown in Table 3. In the experiment, flow regimes are researched in
five different inlet structures. The difference of each inlet structure
is the necking ratio rn, which is the ratio of the gas-liquid flow area
to the inlet pipe section area.
2.2. Data reduction

Two kinds of datawhich can reflect flow regimes are acquired in
experiments. It is necessary to clarify that the gas and liquid flow
rate (superficial velocity) are converted by the measurement of
quantity of gas/liquid flow. The identification of GLCC flow regimes
is based on practical fields project, and before the mixture of gas
and liquid entering GLCC, the quantity of gas/liquid/mixture flow is
measured by multiphase flow meter, both in overland and under-
water gathering & transportation engineering. For some gas fields
in China, the quantities of gas and liquid flow are possible to be
measured like measuring pressure drops, with error range in ±3%.
The pressure drop is the time-varying kind of data which is peri-
odical in each flow regime, as shown in Eq. (1). As the differences of
flow regimes are based on the different slug presences and moving
characteristics, and the slug presences and moving characteristics
result in the different characteristics of pressure drops, so the
Fig. 3. Experime
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pressure drops can reflect the flow regimes. The other kind of data
is superficial velocities of gas phase and liquid phase, as shown in
Eqs. (2) and (3). The data for flow regimes identification are
calculated by the data which are measured by measurement
module. The flow regimes in different velocities and inlets are
shown in Fig. 4.

Dp¼ P1�P2 (1)

vg ¼Qg

A
¼ 4Qg

pd2
(2)

vl ¼
Ql
A

¼ 4Ql

pd2
(3)

For GLCC in practical fields, the vertical pipe is set for
researching the effects of the vertical pipe, so the pressure
measuring point P1 is set in front of the vertical pipe. In order to
remove the probable effects of sampling time, a dimensionless time
is used as

t¼ TS � T0
t0

(4)

where Ts is the testing time, T0 is the initial time of one test, and t0 is
a testing period.

The data used in flow regimes identification are pressure drops
and superficial velocities. The flow regimes identification using the
two types of data is based on the classical machine learning. For the
flow regimes in lack of velocity data or the ranges of their velocities
are quite far away from others, these kinds of flow regimes are not
chosen as the researched objectives. The algorithms of machine
learning are shown in Fig. 7. In ensemble model, the basic is De-
cision Tree model, which is based on a tree structure. The bifurca-
tion and pruning of the tree are determined by some calculation
index, and the classification of the object is determined. The multi-
classification of the predicted value is realized by multiple bifur-
cation refinement classification. The Decision Tree model consists
Bagging Tree and Boosting Tree. The Bagging Tree and Random
ntal setup.



Table 2
Experiment module and device.

Module Name Device Name Range Precision Producer

Measurement Module Gas Measurement orifice plate flowmeter(EJA115 0.864 mm) 0.11e0.77, Nm3/h ±5% Yokogawa Sichuan Instrument Co.
orifice plate flowmeter(EJA115 2.527 mm) 0.876e6.3, Nm3/h ±5% Yokogawa Sichuan Instrument Co.
orifice plate flowmeter(EJA115 6.350 mm) 5.34e37.8, Nm3/h ±5% Yokogawa Sichuan Instrument Co.
vortex shedding flowmeter 30-400, Nm3/h ±1% Yokogawa Shanghai Instrument Co.

Liquid Measurement Mass flowmeter(DY015-DN15) 0e27200, kg/h ±0.75% Micro Motion Co.
Pressure Measurement Rosemount3595 adjustable ±5% Rosemount Co.

Keller PA23 0e21000, bar ±0.3% KELLER AG fur Druckmesstechnik
Rosemount3051 0e62, kPa ±5% Rosemount Co.

Power Module screw compressor e e Atlas Co.
IH single stage centrifugal pump e e Yangzijiang pump Co.

Image Module Camera XeS10 e e FUJIFILM (China) Investment Co.
Data Acquisition Module NI PCI-6229&Labview e e National Instrument Co.

Table 3
Characteristics range for different flow patterns and fluids type.

Flow pattern vg range, m/s vl range, m/s GLR

Annular flow >12 >0.06 125e150
Continuous flow 8e12 0.02e0.06 133.3e600
Intermittent flow 2e8 0.02e0.06 25e300
Fluid type Density, kg/m3 Viscosity, Pa$s Temperature, �C
water 997.048 1.005 � 10�3 20
air 1.205 1.790 � 10�5 20
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Forest are similar type of machine learning. The key of Bagging Tree
and Random Forest is introducing randomization into its con-
struction procedure and thenmaking an ensemble of it, which aims
to increase the variety of tree types and training set.

The other type of tree model is Boosting Tree, including Ada-
boost, GBDT, XGBoost and LGBM. The main characteristic of Ada-
boost is that it can change the weights of incorrectly classified
terms in order to focus more about these cases. GBDT is used for
regression originally and then for classification after optimization,
however, this algorithm can be more complex with the increase of
data. XGBoost can be seen as the improvement of GBDT by
considering the complexity of tree and it has improved the effi-
ciency of calculation. The proposal of LGBM is to solve the problem
when GBDT meets with large amounts of data, and it has suc-
cessfully make the GBDT faster than before.

Besides the algorithms based on Decision Tree, the other clas-
sical algorithms for classification are also applied. SVM uses the
support vector to determine the boundary of classification. By the
limitation of its mechanism, SVM needs to use one-to-others order
to realize the multi-classification. KNN is an algorithm which also
has the function of classification and regression, but is different
from the ensemble models, because it just records and remember
all the data. The advantage of KNN is that it can describe complex
boundary between the classifications. The algorithms above realize
the classification by voting or statistics from different sub models,
but Bayesian Model uses probability to classify. The Bernoulli Bayes
classifier and Gaussian Bayes classifier from Bayesian Model are
used for the flow regimes identification. These two sub models
assume the input is as the distribution of Bernoulli and Gaussian.
The MLP model is also called ANN, and uses multi layers to classify
the objective data, and it is the most complex algorithm of all, since
the layers of itself and nodes are still unknown.
3. Results and discussion

3.1. GLCC inlet flow regimes with a vertical pipe

The GLCC inlet flow regimes with a vertical pipe are found in the
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type of annular flow, intermittent flow including three patterns,
and continuous flow including three patterns, which are classified
in A, B and C. Comparing the different classifications mean different
evolution processes. Combining the flow regimes phenomena with
the corresponding pressure drops, the changes in pressure drops
are related to the evolution processes, especially to the slug for-
mation, moving, releasing and other motions. The flow regimes
evolution process and pressure drops are shown in Fig. 5, and
described in detail by (Yang et al., 2022). The presence of a vertical
pipe can significantly form a slug inside and have the effects on the
flow regimes development. It has been found that the pressure
drops change periodically, because in fixed gas and liquid superfi-
cial velocities, the process of corresponding flow regime is
periodical.

For the flow regimes in this experiment, the corresponding vg
and vl range are shown in Table 3, and the ratio of vg to vl is also
shown.

3.2. Flow regimes of GLCC

The flow regimes in different positions of GLCC are shown in
Fig. 6. In the LCO, there are 3 flow regimes which are swirling
annular flow, interim flow and complete churn flow (Wang et al.,
2021). In the lower part of GLCC, the flow regimes are bubbly
vortex flow, excavated vortex flow and deeply excavated vortex
flow (Hreiz et al., 2014).When the inlet is inclined, the flow regimes
are defined as stratified smooth flow, slug flow, stratified wavy flow
and annular flow (Hreiz et al., 2014), however, the research has not
considered the vertical pipe in front of that. The experiment in this
paper has added the horizon inlet with the vertical pipe, and the
flow regimes are continuous flow, intermittent flow and annular
flow.

3.3. Flow regimes identification

The flow regimes are often classified by gas and liquid superfi-
cial velocity, in the form of flow regimes map, so velocities can be
used as the standard of flow regimes identification. All the flow
regimes in the four positions have their related flow regime maps,
so the velocity data samples can be obtained by the maps. Mean-
while, in the experiment of this paper, it has been found that
pressure drops may be the characteristics to identify flow regimes,
so the pressure drops are also used as the input data of machine
learning, also by the same algorithms of Ensemble models, SVM,
KNN, Baysian Model and MLP, as shown in Fig. 7 (Rebentrost et al.,
2014; Massaoudi et al., 2021; Wang et al., 2021; Abell�an and
Masegosa, 2012).

The 12 machine learning algorithms include linear classification
(KNN), nonlinear classification (MLP), high-dimensional spatial



Fig. 4. Flow regimes in different inlets and velocities.
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mapping (SVM), Tree-based classification and its advancements
(Decision Tree, Bagging Tree, RandomForest, Adaboost, XGBoost,
LGBM), Bayesian decision model (Bernoulli Bayesian Network and
Gaussian Bayesian Network). As Fig. 7 shows, gas/liquid superficial
velocities and pressure drops are chosen as the objective data type
to realize GLCC flow regimes identification. The gas/liquid super-
ficial velocities can be seen as two-dimensional data without
changing with time, and the pressure drop is a kind of temporal
data, which can be easily acquired from practical fields. According
to the types of data, the mainstream kinds of machine learning for
identification, including Tree Model & Ensemble Model, SVM, KNN,
Bayesian Model and MLP. The five models above cover the current
545
machine learning models with different principles as comprehen-
sively as possible. It can give support for quick selection of models
in practical application.

Both pressure drop data and superficial velocity data are clas-
sified into training set and test set. There are 5091 groups of data
(Wang et al., 2021; Hreiz et al., 2014) which contains gas superficial
velocity and liquid superficial velocity, and 1026 groups of data of
pressure drops. Each group of data has been marked with its cor-
responding flow regimes. The ratio of training set to testing set is
8:2 and the choosing of data for these two sets is random in each
identification.

The most popular indexes to measure the results of machine



Fig. 5. GLCC flow regimes with vertical pipe.

Fig. 6. Flow regimes of GLCC.
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learning identification are accuracy, confusion matrix and Receiver
Operating Characteristic (ROC). The definition of accuracy is

accuracy¼Ncorrect

Ntotal
(5)

where Ncorrect is the number of data which are identified correctly,
and Ntotal is the number of the total corresponding testing data. The
accuracy is the most simple measurement index. The confusion
546
matrix is a matrix combining real results and output results. Each
column of the confusion matrix represents the prediction category,
and the total number of each column represents the number of data
predicted for this category. Each row represents the true category of
data. The ROC curve is another index to measure the classification
results. The abscissa of ROC is False Positive Rate(FPR), and the
ordinate is True Positive Rate(TPR). The FPR and TPR are shown as:



Fig. 7. Flow regimes and machine learning.
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FPR¼ FP
FP þ TN

(6)

TPR¼ TP
TP þ FN

(7)

where the classifications are assumed to be positive(P) and neg-
ative(N), and the results are true(T) and false(F), so TP is true pos-
itive, FP is false positive, TN is true negative and FN is false negative.
The area of ROC curve can reflect the accuracy of identification, and
when the area is near 1.0, the more accurate the results of
Table 4
Accuracy of algorithms for flow regime identification.

Algorithm Accuracy by superficial velocity

Random forest 0.9971
KNN 0.9253
SVM 0.5501
Adaboost 0.7868
XGBoost 0.9951
GBDT 0.9961
Bagging Tree 0.9941
Decision Tree 0.9961
Bernoulli Baysian Network 0.4126
Gaussian Baysian Network 0.8988
LGBM 0.9941
MLP 0.9941
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identification are.
The 12 algorithms can be initially selected by Table 4. B means

the corresponding algorithm has higher accuracy for superficial
velocity in the initial election, and △ means higher accuracy for
pressure drops. The applicability of each algorithmwill be analyzed
in the following parts. The accuracies of 12 algorithms are shown in
Table 4, and it can be seen that for flow regimes identification by
superficial velocities, the Random Forest, XGBoost, GBDT, Bagging
Tree, Decision Tree, LGBM and MLP can identify the flow regimes
with the accuracy above 0.99, so the algorithms based on decision
tree are suitable for the flow regimes identification by velocity data.
For the flow regimes identification by the pressure drop, the
Accuracy by pressure drop Primary election

0.8182 B△

0.4545 B

0.3636 e

0.6363 e

1 B△

0.8182 B△

1 B△

0.6363 B

0.6363 e

0.6363 B

0.8182 B△

0.8182 B△
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XGBoost and Bagging Tree can identify all the flow regimes by the
pressure drops.
3.3.1. Identification by superficial velocity
Fig. 8 shows the confusion matrix of regimes identification with

superficial velocities. The results of confusion matrix fit the results
of accuracy. It can be seen from confusion matrix that for the al-
gorithms with accuracy above 0.99, there is confusion in stratified
Fig. 8. Confusion matrix of regime ident
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wavy flow, slug flowand stratified smooth flow. Few stratifiedwavy
flows are identified with stratified smooth flow and slug flow, and
the reasons for that are: 1) there are few points in the transition
area between stratified wavy flow-stratified smooth flow, and
stratified wavy flow-slug flow. To avoid the effects of transition
area, the data sampling is uniformly-spaced. However, when the
sampling data point is located in transition area, like Fig. 9, the
classification boundary of flow regimes described by machine
ification with superficial velocities.



Fig. 9. Inclined inlet flow regimes map of GLCC.
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learning algorithms may be not the same as the real boundary in
flow regimes map, which can affect the identification results of
machine learning. Actually, in experiment, the boundary of flow
regimes cannot be described accurately and clearly, for which the
real boundary is an area, so the sampling points has not been
selected more than the other areas. 2)For the unification of inlet
flow regimes of horizon inlet and incline inlet, the flow regimes in
the two inlets are mixed and trained by each machine learning
algorithm, so when the superficial velocities are the same, the
identification may be confused by few data.

Based on the Fig. 13, the ROC curves are in accord with the re-
sults of confusion matrix. For the algorithms with accuracy above
0.99, the ROC curve of the flow regimes can reach the area larger
than 0.99, which mean the results of identification are accurate. It
can be concluded from all the machine learning algorithms that the
ensemble models and MLP algorithms are accurate for the GLCC
flow regimes identification.

In detail, the ensemble models are based on the decision tree
algorithms, including Bagging Tree, Decision Tree, GBDT, LGBM. The
details of the ensemble models are shown in Fig. 10 and Fig. 11.
According to the brief introduction of ensemble models of machine
learning, the process of flow regimes identification by boosting
algorithm is shown in Fig. 10. Firstly, the data are sampled from the
total database randomly, each of which has been labeled by posi-
tion, flow regime, vsl, vsg. When the sampling time is T, the amount of
training sets is T, and we can get T base learning algorithms. Based
on the ensemble strategies, such as weights method, all the base
learning algorithms are ensembled to form a more powerful algo-
rithm. The key of Boosting algorithm is if the flow regime is iden-
tified wrong, as shown in red, theweights of the wrong itemwill be
added. The aim of that is to make the final powerful algorithm can
learn the difficult samples better.

For the Bagging algorithm, the difference of that from boosting
algorithm is that the base learning algorithms are less related and
are trained at the same time, as shown in Fig. 11. The ensemble
method of these algorithms is also different, such as average
method and voting method. In addition, for the application for
classification or identification, the ensemble method is chosen as
voting method. The accuracy of bagging method depends on the
stableness of base learning algorithms. The most famous boosting
algorithms are AdaBoost and GBDT.

The other important algorithm is decision tree, whose learning
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process can be shown in Fig. 12. The decision tree can be seen as a
tree structure. Each internal node represents a judgment on an
attribute, each branch represents the output of a judgment result,
and finally each leaf node represents a classification result. The key
of decision tree for flow regime identification is the thresholds
which are set to classify the flow regimes. For the identification by
superficial velocities, the thresholds mean that the algorithm
should find the critical gas and liquid superficial velocities to
distinguish the flow regimes, just like describing the flow regimes
map.

According to the characteristics of the algorithms described
above, the ensemble models and decision tree can be combined
with decision tree algorithm, so as to acquire other ensemble al-
gorithms, such as

Bagging þ Decision Tree ¼ Random Forest (8)

Adaboost þ Decision Tree ¼ Boosting Decision Tree (9)

Gradient Boosting þ Decision Tree ¼ Gradient Boosting Decision
Tree (GBDT) (10)

As shown in Fig. 8 and Table 4, AdaBoost algorithm shows the
terrible accuracy in flow regimes identification by superficial ve-
locities, but Decision Tree can effectively improve the accuracy of
flow regimes identification. The fundamental machine learning
algorithms such as Decision Tree and Bagging Tree can identify the
flow regimes by superficial velocities accurately, so the other
ensemble algorithms can. This has also shown that: 1) superficial
velocities are suitable indexes to characterize and identify the flow
regimes. 2) For the fundamental algorithms like Boosting algorithm
and Bagging algorithm, the Bagging algorithm is better than the
Boosting algorithm. 3) Machine learning can effectively identify
most flow regimes by the velocity data. 4) The fundamental algo-
rithms of machine learning can realize the identification of flow
regimes, and it is unnecessary to use the deep learning. 5) For the
accuracy of Decision Tree, the key point of flow regimes identifi-
cation is to determine the threshold.

In addition, there are still some algorithms which are not suit-
able for the flow regimes identification. For the Adaboost algo-
rithm, it will give too many weights to the samples which are
difficult to classify, so this results in that the imbalance of data can



Fig. 10. Boosting algorithm.
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decrease the accuracy of identification decrease. The data points of
superficial velocities for flow regimes are actually not distributed in
the same number for each regime, so the AdaBoost algorithm is not
suitable for this identification. Thatmeans the numbers of sampling
points for each flow regime are different. For example, as Fig. 4d
shows, there are 3 flow regimes including 7 evolution processes,
and the sampling points of each process are marked by different
shapes and colors. It can be seen from Fig. 4d that different flow
regimes have different number of sampling points, which are called
data points in machine learning algorithms. Since Adaboost is
sensitive to the imbalance data groups, the difference of sampling
points numbers in each flow regime can affect the accuracy of
Adaboost. For the classical SVM algorithm, the best area is di-
chotomy, but the flow regimes identification is not a simple di-
chotomy problem, so the classical SVM is not suitable for the flow
regimes identification neither. For the Bayesian Network algorithm,
based on the essence of this kind of algorithm, which depends on
the probabilities to classify, require that the characteristic proper-
ties have no relationship, if not, the Bayesian Network algorithm
will be ineffective.

3.3.2. Identification by pressure drops
For the pressure drop identification by pressure drops, it has

been found the results of identification are different in different
tests, and Fig. 14 shows the 12 algorithms to identify the flow re-
gimes 100 times and combine the confusion matrixes of highest
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and lowest accuracies into one confusion matrix. It can be seen
from the new Fig. 14 that XGBoost and GBDT have the accuracy in
range of 0.856e1.000 (slug flow), 0.91e1.00 (stratified wave flow)
and 0.92e1.00 (slug flow), 0.895e1.00 (stratified wave flow). The
reasons for 100% accuracy are that: 1) the results of machine
learning are random, including accuracy of 100%, so the results
from two tests cannot show the accuracy of each algorithm for the
flow regime identification; 2) compared with the data from prac-
tical fields, there are much less noise in experimental data.
Different from superficial velocities, the pressure drops change
with time periodically, and the sample data amount is less than
superficial velocities. For this type of data, few ensemble algorithms
show the advantages in identification. It can be seen from the
identification results after multi-tests, the most confusions are
some of the slug flow can be identified as stratified wave flow, and
some annular flow can be identified as slug flow. The ROC curves in
Fig. 15 show the similar results of the flow regime identification.

Combined with Fig. 14, the Table 5 and Fig. 16 show the averages
of accuracies and variances of 100 random tests. GBDT and XGBoost
have the identification accuracy above 0.90, however, the accuracy
of identifications by pressure drops are not as good as those by
superficial velocities, and the identifications by superficial veloc-
ities are more stable than those by pressure drops.

Based on the results of the identification frommachine learning,
the combination of slug flow A and stratified wave flow C, which
are the different evolution processes of slug flow and stratified



Fig. 11. Bagging tree.

Fig. 12. Decision tree.
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wave flow; and the combination of slug flow C and annular flow,
which is the evolution of slug flow, may confuse the algorithms of
identification. The explanation of the results of machine learning
551
has been recognized as the difficulty, especially for the confusion of
the results. That's also the reason for that the process of machine
learning is called Black Box. In this paper, experimental results, the



Fig. 13. ROC of regime identification with superficial velocities.

Z.-M. Yang, Y.-X. He, Q. Xiang et al. Petroleum Science 20 (2023) 540e558
evolution process of flow regimes and the characteristics of algo-
rithms are used to explain the confusion of identification results.

Based on the experiments of horizon inlet flow regimes, there
are three types of slug flow and three types of stratified wave flow,
which are distinguished by A, B, and C. As can be seen from Fig. 17,
the pressure drops of slug flow A and stratified wave flow C have
similar trends. Comparing the process of flow regime and the
synchronous pressure drops, the increase of pressure drops for slug
flow A is the result of slug moving. With the slug moving in the
vertical pipe, the pressure drop keeps increasing. Then the slug
arrives at the inlet, and release into the GLCC, meanwhile the
pressure drops begin to decrease. There is also a period when the
pressure drops in stable fluctuations, and this is because the liquid
is accumulating to form the slug. In addition, the slug cannot form
easily after each accumulating process, however, from the whole
perspective of slug flow A, its pressure drops and evolution process
are periodical. For stratified wave flow C, it can be seen from Fig. 17
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that there is a process of springback when the liquid flows in the
horizon pipe before the vertical pipe. It has been found that not all
the velocities can result in the back flow, which is special for the
stratified wave flow C and annular flow. The backflow can also have
the similar effect which block off the horizon pipe to make the
pressure drop increase. That is why the pressure drops of these two
flow regimes have the similar trend, which confuses the identifi-
cation algorithms. Due to the higher gas superficial velocity, the
slug cannot form in stratified wave flow C, and high gas superficial
velocity is also the reason for that the pressure drops of stratified
wave flow are higher than that of slug flow.

For slug flow C and annular flow, the two flow regimes also
confuse the other algorithms. Both of these two flow regimes have
the larger fluctuations in their pressure drops than other flow re-
gimes. As shown in Fig. 18, the liquid slug consists large amount of
gas phase, in the form of the slug containing a lot of bubbles. The
volume and length of the slug are larger and longer than other flow



Fig. 14. Confusion matrix of regime identification with superficial velocities.
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regimes, and it has been found that for slug flow C, this type of slug
can reciprocate in the vertical pipe. The reciprocating motion is also
the formation process of liquid slug. If the liquid slug form suc-
cessfully after the reciprocating motion, a large slug will enter GLCC
and release, with the pressure drop increase roughly. There are also
some conditions that the large slug does not form after the recip-
rocating motion, which result in the larger fluctuation of pressure
drops but without sudden increase. For the annular flow, there is a
springback process in the horizon pipe before the vertical pipe,
which is similar with stratifiedwave flowC. The difference between
annular flow and stratified wave flow C is that the springback
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process for annular flow consists the drastic colliding between two
flows in inverse directions. The installation site of the pressure
sensor where P1 is in Fig. 3, is on the upside of the horizon pipe. The
colliding of liquid flow can make the liquid reach the pressure
sensor, so as to result in that the pressure drops have large fluc-
tuation, which are similar with slug flow C. That can also explain
the confusion of slug flow and annular flow.

For the flow regimes identification based on the pressure drop
which is changing with time, the GBDT and XGBoost have shown
the advantages. The mechanism of Boosting tree has been intro-
duced in 3.3.1. The XGBoost algorithm is actually an improvement



Fig. 15. ROC of regime identification with pressure drops.

Table 5
Average accuracies and variances of GLCC flow regimes identification by pressure
drops.

algorithm accuracy variance

Adaboost 0.637273 0.008598
GBDT 0.916364 0.010966
BNB 0.605455 0.012392
GNB 0.631818 0.012918
XGB 0.905455 0.013009
BaggingTree 0.882727 0.014909
MLP 0.898182 0.015574
LGBM 0.602727 0.015637
DTree 0.894545 0.016148
SVM 0.386364 0.016425
RF 0.898182 0.01691
KNN 0.563636 0.023875
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of GBDT, which is famouswith high efficiency of calculation and the
easy application in engineering fields. In reality, the base learning
algorithm of XGBoost and GBDT is also decision tree, and XGBoost
has optimized its sampling method and loss function. Since the
pressure drops data are the type of data which is changing with
time, such time-varying data are mostly used for prediction in
machine learning, but few in identification. From the results of
Figs. 14 and 15, it can be concluded the pressure drops are not the
best choice of machine learning to identify flow regimes, as most
machine learning algorithms have low accuracy in identification. It
should be explained here that the ‘low’ accuracy is a concept
compared with the accuracy of identification using superficial ve-
locities. The accuracies of the 12 machine learning algorithms by
pressure drops are lower than those by superficial velocities,
however, the accuracies of GBDT and XGBoost are still above 0.90
during the repeated tests. The better performance of XGBoost and
GBDT are not contradictory to the analysis of the reasons for the



Fig. 16. Probability density distribution of flow regimes identification by pressure
drops.
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lower accuracy of identification by pressure, which is compared
with the accuracy by superficial velocities.

Based on the experimental mechanism explanation above, the
complexness of multiphase flow increases the possibility of
confusion, especially the vertical pipe is present. In addition, the
experiments to measure the pressure drop costs much longer time
than those to measure other physical quantities. In result, the data
of pressure drops and corresponding flow regimes are much less
than the velocity data. Since the research of pressure drops and
flow regimes are few, the related literatures which can provide data
for reference are few, which is also the reason for the identification
results fluctuation in Fig. 14.
Fig. 17. Example of slug flow
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Based on the accuracy of GBDT and XGBoost, these two algo-
rithms based on boosting tree, which is based on Decision Tree
algorithms are suitable for the flow regimes identification by the
pressure drops data, which also have high accuracy during the
identification using superficial velocities. In addition, the successful
method of a statistic method in GLCC flow regimes identification by
(Yang et al., 2022), is the same with the essence of decision tree,
which continues to set the thresholds step by step to classify the
flow regimes one by one.

It can be concluded that the decision tree algorithm is the core of
the GLCC flow regimes identification. However, less machine
learning algorithms are suitable for the flow regimes identification
by using the pressure drops data. The reasons for that can be
concluded that: 1) the data of pressure drops of GLCC are complex.
Compared with the superficial velocity, the pressure drops of each
flow regime are consisted with dozens of or hundreds of pressure
drop points, but the superficial velocity data of each flow regime
are only two data points, including gas superficial velocity and
liquid superficial velocity. In addition, the complexity of multiphase
flow and the presence of vertical pipe have made the pressure
drops more complex. 2) The pressure drops of GLCC are changing
with the time, which are time-varying and different from other
type of data. Although the pressure drops are periodical, they still
can confuse the training process of algorithm easily, which are
related to the division of the period and the classification boundary
of the wave shapes of pressure drops. 3) the amount of pressure
drops data of GLCC, which can be labeled by the corresponding flow
regime, is few in the experiments of this paper and in other liter-
atures. 4) The types of machine learning algorithms, which can
realize the identification based on complex pressure drops data, are
limited.

For the algorithms not suitable for the flow regime identification
by pressure drops data, the disadvantages of SVM, Adaboost and
Baysian Network are introduced in 3.3.1, and they are not accurate
A and pressure drop.



Fig. 18. Example of slug flow C and pressure drop.
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in the identification using neither superficial velocity nor pressure
drops. In addition, for KNN, Decision tree, LGBM, these four algo-
rithms are obviously accurate in the flow regimes identification by
Table 6
Conclusions of machine learning algorithms for GLCC flow regimes identification.

Input data
category

Suitable/
unsuitable

Algorithm name Reasons & remarks

Superficial
velocity

suitable Random forest C The principles of algorithms based
are thresholds setting

C The classification based on decisio
C The gas and liquid superficial vel

suitable indexes as the machine le

XGBoost
GBDT
Bagging Tree
Decision Tree
LGBM
MLP MLP is suitable for various kinds of d
KNN Based on distance measurement to cl

unsuitable SVM Most suitable for dichotomy problem
Adaboost Giving too many weights to the diffic
Bernoulli Bayesian
Network

Requiring the characteristic propertie

Gaussian Bayesian
Network

Pressure
drop

suitable GBDT The combinations of decision tree an
function, are suitable for the time-varXGBoost

unsuitable Random forest C The complexities of GLCC structur
not suitable to be used for flow re

C The Decision Tree itself and Baggi
Bagging Tree
Decision Tree
LGBM
MLP C The applied MLP algorithm is origi

C For the types of time-varying data
C MLP has complexity in its layers a

KNN The distance measurement is not suit
SVM Most suitable for dichotomy problem
Adaboost Giving too many weights to the diffic
Bernoulli Bayesian
Network

Requiring the characteristic propertie

Gaussian Bayesian
Network
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superficial velocity but not by pressure drops, so in the GLCC flow
regimes identification, the machine learning algorithmsmentioned
above are suitable for the static data such as velocities, but not for
on decision tree are consistent with the key of flow regimes identifications, which

n tree which can identify the flow regimes step by step is effective
ocities make the flow regimes identification simple for tree models and they are
arning input data

ata due to its multiple layers and nodes to fit the objects relations
assify which is effective for two-dimensional points classifications
s
ult samples but the data are imbalanced
s of flow regimes data have no relationship which is not in reality

d Boosting tree, especially with the optimizations of sampling methods and loss
ying pressure drops data, to identify the GLCC flow regimes
es and multiphase flow in it result in the complexities of pressure drops, which are
gimes identification
ng Tree algorithms are not suitable for the time-varying pressure drops data

nal version without optimization and improvement, but it still has accuracy of 0.89
, MLP can get into extreme value easily
nd nodes, and it has large potential to be optimized and improved
able for the pressure drop data
s
ult samples but the data are imbalanced
s of flow regimes data have no relationship which is not in reality
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the dynamic data such as pressures. However, the improvements of
Decision tree in the forms of XGBoost and GBDT are effective and
can identify the flow regimes by pressure accurately. Especially for
KNN, which realizes the identification by distance measurements,
the distance measurement is an effective way to describe the
boundary between flow regimes, like drawing the flow regimes
map. For the MLP algorithm, since it is a complex and special al-
gorithm, and it can easily get into extreme value easily, this algo-
rithm has the accuracy of 0.99 and 0.89 specifically when using the
velocity data and pressure drop data, but the MLP itself has large
potential to be improved. Themulti-layers insideMLP including the
number of nodes and the number of layers, but the improvement of
which is still the recognized difficult problem in thewholemachine
learning area. However, the pressure drops of flow regimes has the
similar part such as the little fluctuations when the slug is devel-
oping. In reality, it is really hard to say some machine learning are
absolutely not suitable for the flow regimes identification, because
the algorithms of machine learning can be improved by combining
with other algorithms or adjusting the index of the function inside.
The machine learning algorithms for GLCC flow regimes identifi-
cation are concluded in Table 6.

4. Conclusion and future works

The pressure drops and the gas/liquid superficial velocities are
set as the input data of traditional machine learning algorithms, to
realize the GLCC flow regimes identification. In this paper, the
availability of data for the practical fields has been considered.
Ensemble algorithms, SVM, KNN, Bayesian Models and MLP, which
have been classical and popular algorithms of machine learning for
identification, are applied in the GLCC flow regimes identification.

For the superficial velocities as the input data, the results show
that Random Forest, XGBoost, GBDT, Bagging Tree, Decision Tree,
LGBM and MLP can identify the flow regimes by the velocity data
with the accuracy above 0.99. The confusion of these algorithms is
from stratified smooth flow and slug flow, which are the flow re-
gimes at the inlet of GLCC. The reasons for the confusion are mainly
based on the presence of transition area and the overlap of the
input data. It has been found that the ensemble algorithms, which
are based on the decision tree model, have the high accuracy in
flow regimes identification. After the specific analysis of the
Bagging and Boosting algorithms, the calculation process of the
labeled velocity and flow regimes data, the data flow and details of
the two algorithms are arranged clearly, so their success of flow
regimes identification combined Decision Tree is the thresholds
setting, which continues to be updated and improved in calcula-
tion, and this is the key of the identifications. The superficial ve-
locities are effective index for machine learning to identify the
GLCC flow regimes, by which the traditional algorithms can have
accuracy above 0.99 and be stable after multi-tests without addi-
tional improvement, and based on that, Bagging algorithm is better
than Boosting. For the algorithms which are not suitable, they are
also analyzed by their principles and inapplicability.

For the pressure drops as the input data, which is changing with
time periodically, the XGBoost and GBDT can identify the flow re-
gimes accurately during the multi-test, and the results of algo-
rithms have the fluctuations in tests. It has been found that the
confusions of other algorithms are from slug flow and stratified
wave flow, and from annular flow and slug flow. These flow regimes
are analyzed by checking their different evolution processes, and
the slug flow A has a slug moving stage which is similar with the
springback stage of stratified wave flow. Meanwhile, the slug flow C
has the bubble bounce stage which is similar with the colliding of
the inverse flows in horizon pipe from annular flow. Based on the
experimental flow regime evolution processes and the
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corresponding pressure drops, and combined with the analysis of
the algorithms principles and the research of GLCC flow regimes
before, the success of XGBoost and GBDT, and the confusion of
other algorithms are explained. Compared with superficial veloc-
ities, the pressure drops are not as suitable as that to identify the
GLCC flow regimes, because of the complexity and insufficiency of
pressure drops data, and the limitation of the algorithms. For the
algorithms which are suitable for the velocity data but not for
pressure drop data, their applicability and inadaptability are
analyzed based on the calculation processes and model principles.
The measurement of gas/liquid flow rate is more difficult than that
of pressure drops. It should be furtherly clarified that for the GLCC
flow regimes identification based on velocities and pressure drops,
in terms of accuracy and algorithms applicability, gas/liquid su-
perficial velocity is better; however, for the practical fields which
cannot measure gas and liquid flow rate respectively, the pressure
drops should be chosen.

There is a long way to go for the machine learning applied in the
GLCC flow regimes identification. The explanation based on phys-
ical mechanisms of machine learning is important, because it is an
effective way to let practical industry fields accept that, and to
check the rationality of the learning results. The accuracies of ma-
chine learning are related to the amount of flow regimes data and
the description of the transition area between flow regimes. In
addition, the indexes adjustments and the optimization of the al-
gorithms are important, so as to be more suitable for the
complexity of the multiphase in GLCC and the complexity of the
flow regimes types and evolution processes. In view of the indus-
trial application, research should focus more on the GLCC flow re-
gimes identification by data from practical fields.
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