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a b s t r a c t

The large storage requirement is a critical issue in cross-correlation imaging-condition based reverse
time migration (RTM), because it requires the operation of the source and receiver wavefields at the same
time. The boundary value method (BVM), based on the finite difference method (FDM), can be used to
reconstruct the source wavefield in the reverse time propagation in the same way as the receiver
wavefield, which can reduce the storage burden of the RTM data. Considering that the FDM cannot well
handle models with discontinuous material properties and rough interfaces, we develop a source
wavefield reconstruction strategy based on the finite element method (FEM), using proper orthogonal
decomposition (POD) to enhance computational efficiency. In this method, we divide the whole time
period into several segments, and construct the POD basis functions to get a reduced order model (ROM)
for the source wavefield reconstruction in each segment. We show the corresponding quantitative
analysis of the storage requirement of the POD-FEM. Numerical tests on the homogeneous model show
the effectiveness of the proposed method, while the layered model and part of the Marmousi model tests
indicate that the POD-FEM can keep an excellent balance between computational efficiency and memory
usage compared with the full-stored method (FSM) and the BVM, and can be effectively applied in
imaging.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Seismic imaging (Claerbout and Doherty, 1972; Gazdag, 1978;
Bleistein, 1987; Keho and Beydoun, 1988; Hill, 2001; Zhang et al.,
2002, 2019; Yang et al., 2015; Yao and Jakubowicz, 2016; Jiang
et al., 2021; Li and Qu, 2022) plays an important role in explora-
tion geophysics. Among many imaging methods, RTM has a sig-
nificant advantage in high accuracy imaging of complex subsurface
structures (Hemon, 1978; Whitmore, 1983; Baysal et al., 1983;
McMechan, 1983; Fei et al., 2015). RTM includes three main parts:
the forward propagation of the source wavefield, the backward
propagation of the receiver wavefield, and the imaging condition.
Among them, the imaging condition is the key component which
affects the quality of the ultimate imaging profile. The common
nd Statistics, Xi'an Jiaotong
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imaging conditions include: the cross-correlation imaging con-
dition(Claerbout, 1971; Zhang et al., 2002), the excitation-time
imaging condition (Chang and McMechan, 1986), the excitation-
amplitude imaging condition (Nguyen and McMechan, 2012; Gu
et al., 2015), the excitation potential imaging condition (Gu et al.,
2014) and the sparse cross-correlation imaging condition
(Nguyen and Mcmechan, 2015). Using the cross-correlation con-
dition is a popular way to achieve high resolution imaging results.
However, it requires the multiplication of the source and receiver
wavefield at the same moment, which means that the source
wavefields at all time steps must be stored, and it will cause a great
storage burden.

To mitigate the huge wavefield storage, one alternative is to
reconstruct the source wavefield in reverse time. Among many
reconstruction methods, the most direct way is to store the source
wavefields at every k (k>1) time step, and estimate intermediate
source wavefields by interpolation as needed during the backward
recursion (Dussaud et al., 2008). Sun and Fu (2013) propose a
Nyquist approach and obtain a significant reduction of storage by
compression. The initial value method (checkpointing method) is
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another practical scheme (Griewank and Walther, 1997; Symes,
2007; Anderson et al., 2012; Yang et al., 2016), which stores the
source wavefields at checkpoints as the initial conditions and
subsequently initiates a recursive forward recomputation of the
source wavefield. However, the computational redundancy of the
checkpointing method decreases the calculation efficiency of RTM
algorithms (Nguyen and McMechan, 2012).

Due to the time reversibility of the numerical calculation of the
wave equation, the boundary value method (BVM) is another
source wavefield reconstruction strategy which is widely used in
RTM. The BVM uses the wavefields at the final two time steps and
the corresponding boundary values or boundary conditions to
reconstruct the source wavefield. The random boundary condition
proposed by Clapp (2009) is one implementation of the BVM, and Li
et al. (2020) subsequently make an improvement by introducing
reversible attenuation, which can eliminate the artifacts brought by
the random layers near boundaries. Additionally, it is also practical
to reconstruct the source wavefield by single or multi-layer
boundary values stored in the forward propagation of the source
wavefield (Feng and Wang, 2011; Nguyen and McMechan, 2012;
Tan and Huang, 2014; Liu et al., 2015).

These source wavefield reconstruction methods are primarily
based on the finite difference method (FDM) (Kelly et al., 1976;
Dablain, 1986). However, the FDM cannot well handle models
with discontinuous material properties and rough interfaces
because of the lack of flexibility and the difficulty of processing
complicated boundary conditions like the Neumann or Robin
boundary condition (Cho et al., 2018; Sotelo et al., 2020).
Compared with FDM, the FEM approach allows flexible meshing,
and can effectively process the complicated boundary conditions
based on the variational principle. Therefore, there are potential
advantages to developing the FEM-based RTM method (Cho and
Gibson, 2019).

The main drawbacks of the traditional FEM are its huge
computational cost for solving large linear equations and the
memory requirements for storing the mass and stiffness matrices
(Liu et al., 2014b; Jia et al., 2021). Hence, the compressed sparse row
(CSR) method (Saad, 2003; Liu et al., 2013, 2014a) can be used to
decrease the storage. Recently, the lumpedmass technique (Richter,
1994; Meng and Fu, 2017) has been applied to accelerate the finite
element modeling by replacing the consistent massmatrix with the
diagonal lumped mass matrix based on the conservation of mass.
The kernel matrices storage (KMS) method introduced by Liu et al.
(2014b) effectively improves the efficiency, and its subsequent
development makes it a good component for finite element
modeling (Meng and Fu, 2017; Su et al., 2019). Although the above
techniques for the FEM are effective, it is still challenging to
simulate the seismic wave propagation by traditional FEM for a
large model size.

The combination of the POD method and the FEM for partial
differential equations can provide efficient means of generating a
reduced order model (ROM), which can alleviate the computational
load and has been successfully applied to many fields (Kunisch and
Volkwein, 2002; Schmidth€ausler et al., 2013; Zhu et al., 2016;
Corrado et al., 2016; Lu et al., 2017). Specifically, Luo et al. (2012)
introduce the POD method to solve the acoustic equation. In gen-
eral, POD-FEM constructs the POD basis functions based on the
solutions in a certain period of time [0,tmax], then derives the ROM
of the original system to quickly recalculate the solutions in the
time interval [0,tmax]. Considering that we need the forward
modeling before the source wavefield reconstruction, the combi-
nation of the POD method and the BVM could be practical to
200
accelerate the process and achieve an efficient low memory FEM-
based RTM.

The rest of this paper is organized as follows. First, we introduce
the theory of the FEM-based RTM. Then, we present the detailed
steps for constructing the POD basis functions and the algorithm of
the POD-FEM based source wavefield reconstruction. We also
present a quantitative analysis of the storage requirement of the
proposed method. Numerical tests on the homogeneous model, the
layered model and part of the Marmousi model are used to
compare the accuracy, computational efficiency and storage of our
method with the FSM and the BVM. Finally, we state our conclu-
sions and discuss the potential application of the proposed method
for 3D modeling.
2. Theory and method

2.1. Imaging condition

RTM is a popular method to obtain a high-resolution imaging
profile of the subsurface structures based on the following source-
normalized cross-correlation imaging condition (Claerbout, 1971;
Liu et al., 2015):

Iðx; zÞ ¼
X
xs

ðtmax

0
ps ðx; z; t; xsÞpr ðx; z; tmax � t; xsÞdtðtmax

0
ps ðx; z; t; xsÞ2dt

; (1)

where I(x, z) is the imaging profile, ps(x, z, t; xs) and pr(x, z, t; xs) are
the source wavefield and the receiver wavefield excited by the
source at the position xs ¼ (xs, zs) and the corresponding seismic
gathers recorded on the surface, respectively.

The above wavefields can be computed by the following con-
stant density acoustic equations:

v2psðx; z; t; xsÞ
vt2

� vðx; zÞ2V2ps ðx; z; t;xsÞ ¼ f ðt;xsÞ; (2)

v2prðx; z; t; xsÞ
vt2

� vðx; zÞ2V2pr ðx; z; t; xsÞ ¼ g ðt; xr; xsÞ; (3)

where v¼ v(x, z) is the velocity, (x, z)2Umeans themodeling area,
f(t; xs) is the source term at the position xs, g(t, xr; xs) is the received
seismic gathers excited by the source at the position xs and xr are
the positions of the receivers.

From Eq. (1), the principle of RTM imaging can be interpreted as
the cross-correlation of two wavefields at the same moment, one
computed by the forward time recursion, and the other computed
in reverse time (Feng and Wang, 2011; Sun and Fu, 2013).
2.2. Finite element modeling of the seismic wavefield

Considering the reflections caused by the artificial truncated
boundary in modeling, we need to introduce an effective absorbing
boundary condition in the process of solving Eq. (2) and Eq. (3). In
this work, we use the split perfectly matched layer (SPML)
absorbing boundary condition. We next present the detailed steps
of using FEM to realize the forward propagation of the seismic
source wavefield.

The constant density acoustic equation with SPML (Komatitsch
and Tromp, 2003) can be written as
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8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

�
v

vt
þ dx

�2
p1 ðx; z; tÞ ¼ vðx; zÞ2v

2ps
vx2

þ f ðt; xsÞ;�
v

vt
þ dx

�3

p2 ðx; z; tÞ ¼ �vðx; zÞ2vdx
vx

vps
vx

;

�
v

vt
þ dz

�2

p3 ðx; z; tÞ ¼ vðx; zÞ2v
2ps
vz2

;

�
v

vt
þ dz

�3
p4 ðx; z; tÞ ¼ �vðx; zÞ2vdz

vz
vps
vz

;

(4)

where p1, p2, p3, p4 are part ofwavefield, ps (x, z, t)¼ p1þ p2þ p3þ p4,
(x, z) 2 Us means the region including the PML area, dx ¼
3v
2Lx

ln
�1
R

�� x
Lx

�
and dz ¼ 3v

2Lz
ln
�1
R

�� z
Lz

�
are the attenuation functions in

the corresponding directions, R ¼ 1 � 10�3, Lx and Lz are the thick-
nesses of the PML, and x and z are the distances from the PML area to
the inner area in the corresponding directions.

For the 3rd-order time partial derivatives in Eq. (4), we intro-
duce the intermediate variables to avoid the difficulty and insta-
bility of discretizing them directly:

p2 ¼
�
v

vt
þ dx

�
p2; p4 ¼

�
v

vt
þ dz

�
p4:

Multiplying Eq. (4) by an arbitrary test function qs(x, y), and
conducting partial integration, the weak form of Eq. (4) can be
written as8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð
Us

�
v

vt
þ dx

�2

p1qsdxdzþ
ð
Us

v2
vps
vx

vqs
vx

dxdz

¼
ð
Us

f ðt;xsÞqsdxdz;

ð
Us

�
v

vt
þ dx

�2

p2qsdxdzþ
ð
Us

v2
vdx
vx

vps
vx

qsdxdz ¼ 0;

ð
Us

�
v

vt
þ dx

�
p2qsdxdz ¼

ð
Us

p2qsdxdz;

ð
Us

�
v

vt
þ dz

�2

p3qsdxdzþ
ð
Us

v2
vps
vz

vqs
vz

dxdz ¼ 0;

ð
Us

�
v

vt
þ dz

�2
p4qsdxdzþ

ð
Us

v2
vdz
vz

vps
vz

qsdxdz ¼ 0;

ð
Us

�
v

vt
þ dz

�
p4qsdxdz ¼

ð
Us

p4qsdxdz:

(5)

When the Ns-dimensional finite element space Hh,s is used to

approximate the Soblev space H1
0ðUsÞ, we can use

ps;hðx; z; tÞ ¼
PNs

i¼1 Psði; tÞ4iðx; zÞ to approximate the source wave-
field ps(x, z, t), where Ps(i, t)¼ P1(i, t)þ P2(i, t)þ P3(i, t)þ P4(i, t), and

f4iðx; zÞgNs
i¼1 are the basis functions of Hh,s.

Let PsðtÞ ¼ ½Psð1; tÞ Psð2; tÞ / PsðNs; tÞ�T , then
201
Ps(t) ¼ P1(t) þ P2(t) þ P3(t) þ P4(t). Substituting ps,h into Eq. (5), we
can get the finite element equations:

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:

M1
d2P1ðtÞ
dt2

þ 2M2
dP1ðtÞ
dt

þM3P1ðtÞ þ K1PsðtÞ ¼ FsðtÞ;

M1
d2P2ðtÞ
dt2

þ 2M2
dP2ðtÞ
dt

þM3P2ðtÞ þ KxPsðtÞ ¼ 0;

M1
dP2ðtÞ
dt

þM2P2ðtÞ �M1P2ðtÞ ¼ 0;

M1
d2P3ðtÞ
dt2

þ 2M4
dP3ðtÞ
dt

þM5P3ðtÞ þ K2PsðtÞ ¼ 0;

M1
d2P4ðtÞ
dt2

þ 2M4
dP4ðtÞ
dt

þM5P4ðtÞ þ KzPsðtÞ ¼ 0;

M1
dP4ðtÞ
dt

þM4P4ðtÞ �M1P4ðtÞ ¼ 0:

(6)

Let Ns ¼ ½41 42 / 4Ns
�T , we have

M1 ¼
ð
Us

NsNT
sdxdz;

M2 ¼
ð
Us

dxNsNT
sdxdz;

M3 ¼
ð
Us

d2xNsNT
sdxdz;

K1 ¼
ð
Us

v2
vNs

vx

�
vNs

vx

�T

dxdz;

Kx ¼
ð
Us

v2
vdx
vx

�
vNs

vx

�
NT
sdxdz;

M4 ¼
ð
Us

dzNsNT
sdxdz;

M5 ¼
ð
Us

d2zNsNT
sdxdz;

K2 ¼
ð
Us

v2
vNs

vz

�
vNs

vz

�T

dxdz;

Kz ¼
ð
Us

v2
vdz
vz

�
vNs

vz

�
NT
sdxdz;

Fsðt;xsÞ ¼
ð
Us

f ðt;xsÞNsdxdz:

In this modeling scheme, we compute the element mass and
stiffness matrices first, then assemble them into the overall mass
and stiffness matrices.

After discretizing the time derivatives in Eq. (6) with the second-
order central difference method, we can calculate the source
wavefield at different times tj ¼ jDt, j ¼ 0, 1, …, J by solving the
following linear equations:
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ðM1þDtM2ÞPjþ1
1 ¼ð2M1�Dt2M3ÞPj1

þðDtM2�M1ÞPj�1
1 �Dt2K1P

j
sþDt2Fjs;

ðM1þDtM2ÞPjþ1
2 ¼ð2M1�Dt2M3ÞPj2

þðDtM2�M1ÞPj�1
2 �Dt2KxP

j
s;

ð2M1þDtM2ÞPjþ1
2 ¼ð2M1�DtM2ÞPj2

þDtM1ðPjþ1
2 þP

j
2Þ;

ðM1þDtM4ÞPjþ1
3 ¼ð2M1�Dt2M5ÞPj3

þðDtM4�M1ÞPj�1
1 �Dt2K2P

j
s;

ðM1þDtM4ÞPjþ1
4 ¼ð2M1�Dt2M5ÞPj4

þðDtM4�M1ÞPj�1
4 �Dt2KzP

j
s;

ð2M1þDtM4ÞPjþ1
4 ¼ð2M1�DtM4ÞPj4

þDtM1ðPjþ1
4 þP

j
4Þ;

Pjs¼Pj1þPj2þPj3þPj4;

(7)

where Pjs ¼ PsðtjÞ. The correspondingmass and stiffness matrices in
Eq. (7) are repeated for different shots revisiting the same model.

We can conduct the backward propagation of the receiver
wavefield in the same way.
2.3. Seismic source wavefield reconstruction based on the BVM

The principle of the BVM-based sourcewavefield reconstruction
is in fact solving a constant density acoustic equation with the
inhomogeneous Dirichlet boundary condition in reverse time. This
problem can be written as8>>>>>>>><>>>>>>>>:

v2psðx; z; t; xsÞ
vt2

� vðx; zÞ2V2psðx; z; t; xsÞ ¼ f ðt; xsÞ;

psðx; z; tmaxÞ ¼ pstmax
ðx; zÞ;

psðx; z; tmax � DtÞ ¼ pstmax�Dt ðx; zÞ;
psðx; z; tÞjvU ¼ pvUðx; z; tÞ;

(8)

where pstmax
and pstmax�Dt are the last two wavefield snapshots we

stored in the forward propagation of the source wavefield, and pvU
is the inhomogeneous Dirichlet boundary condition that we obtain.

Multiplying Eq. (8) by an arbitrary test function qðx;yÞ2H1
0ðUÞ,

and conducting partial integration, the weak form of Eq. (8) can be
written as:

ð
U

v2ps
vt2

qdxdzþ
ð
U

v2Vps,Vqdxdz ¼
ð
U

f ðt; xsÞqdxdz: (9)

To solve Eq. (9), we use the N-dimensional finite element space

Hh to approximate the Soblev space H1
0ðUÞ; then,

ps;hðx; y; tÞ ¼
PN

i¼1 Ps;hði; tÞ4iðx; zÞ can be used to approximate the
reconstructed source wavefield ps(x, z, t).

Let
202
Ps;hðtÞ ¼ ½Ps;hð1; tÞ Ps;hð2; tÞ / Ps;hðN; tÞ�T ;
N ¼ ½41 42 / 4N�T :

Then, we can derive the finite element equations from Eq. (9):

M
d2Ps;hðtÞ

dt2
þ KPs;hðtÞ ¼ FðtÞ; (10)

where

M ¼
ð
U

NNTdxdz;

K ¼
ð
U

v2

"
vN
vx

�
vN
vx

�T

þ vN
vz

�
vN
vz

�T
#
dxdz;

FðtÞ ¼
ð
U

f ðt; xsÞNdxdz:

After discretizing Eq. (10) by the central differencing method,
we can realize the reconstruction of the sourcewavefield by solving
the following linear equations in reverse time:

MPj�1
s;h ¼ ð2M � Dt2KÞPjs;h �MPjþ1

s;h þ Dt2Fj;

j ¼ J; J � 1;…;0;
(11)

where Pjs;h ¼ Ps;hðjDtÞ and Fj ¼ F(jDt).

The application of the inhomogeneous Dirichlet boundary
condition can be realized by modifying the mass matrix M and the
right-hand term.

Considering the huge computational cost of solving the large-
scale linear Eqs. (7) and (11), we use the lumped mass technology
to accelerate the calculation of the forward modeling and the BVM-
based source wavefield reconstruction. In this way, the diagonal
mass matrix Md is used to replace the consistent mass matrix M,
where (Liu et al., 2014a; Meng and Fu, 2017)

Mdði; jÞ ¼ di;jMði; jÞ
0@X

i

X
j

Mði; jÞ
1A, X

i

Mði; iÞ
!
:

2.4. Seismic source wavefield reconstruction based on the POD-FEM

Solving Eq. (10) will be repeated many times in the process of
RTM, so we further accelerate the calculation of finite element
equations by the POD method to improve the efficiency of RTM.

The principle of the POD-FEM can be expressed as finding a new
l dimensional finite element space Hl to approximate the Soblev

space H1
0ðUÞ. Therefore, the construction of the basis functions

fjigli¼1 of Hl is the key point.
We first transform Eq. (8) into the constant density acoustic

equation with the homogeneous Dirichlet boundary condition:8>>>>>>>><>>>>>>>>:

v2pðx; z; t;xsÞ
vt2

� vðx; zÞ2V2pðx; z; t; xsÞ ¼ hðx; z; t; xsÞ;

pðx; z; tmaxÞ ¼ bpstmax
ðx; zÞ;

pðx; z; tmax � DtÞ ¼ bpstmax�Dt
ðx; zÞ;

pðx; z; tÞjvU ¼ 0;

(12)

where p(x, z, t) ¼ ps(x, z, t) � pvU(x, z, t) means the modified source
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wavefield, hðx; z; tÞ ¼ f ðtÞ � v2pvU

vt2 þ v2V2pvU is the modified source
term, and p̂stmax

ðx; zÞ and p̂stmax�Dt
ðx; zÞ are the corresponding initial

conditions whose boundary value are zeros.
In the forward computation of Eq. (2), we can get the source

wavefields pjsðx; zÞ ¼ Pjs;h
T
N at the moment tj ¼ jDt, j ¼ 0, 1, …, J. By

extracting L snapshots from the above source wavefields at a fixed
sampling interval Dtrecord, we obtain a snapshot matrix Ps ¼
½Pw1

s;h Pw2
s;h / PwL

s;h�, where w1, w2, …, wL are the index numbers.

Then, by assigning zero to the boundary value, the discretized
wavefield p(x, z, t) can be expressed as

½pðtw1Þ pðtw2Þ / pðtwLÞ�T ¼ PTNðx; zÞ; (13)

where twi ¼ wiDt; i ¼ 1;2;…; L and P is the snapshot matrix ob-
tained after assigning zero to Ps.

According to the Nyquist sampling theorem, the sampling fre-
quency must be greater than double the highest frequency of the
original signal for complete reconstruction. Fig. 1a and b shows the
Ricker wavelet with 15 Hz dominant frequency in the time domain
and the corresponding frequency spectrum. Since the spectrum
range of the Ricker wavelet with f0 Hz dominant frequency is [0,
fT](fT ¼ 3f0), the snapshot matrix P can be used to represent the
solution of Eq. (12) in the time interval [0, JDt] when the sampling
frequency fs � fN ¼ 6f0. In the section of numerical experiments, we
will show the effect of different fs on the proposed algorithm.

By SVD, P¼WSVT,W2 RN�r, S2 Rr�r, V2 RL�r and r¼ rank(P).
The diagonal elements of S(s1, s2, …, sr) are singular values of P,
and we assume that s1 � s2 �/ � sr > 0. The matrices W and V
satisfy WTW ¼ VTV ¼ Ir, where Ir is the unit matrix.

In this way, an orthogonal basis of Hl can be expressed as

fji ¼ Wð:; iÞTNgli¼1 (Luo et al., 2012; Zhu et al., 2016; Corrado et al.,
2016), whereW(:, i) means the i-th column vector of the matrix W,
and l is the order of the ROM.

Then, plðx; z; tÞ ¼
Pl

i¼1 Plði; tÞjiðx; zÞ can be used to approximate
p(x, z, t), and the solving of Eq. (12) can be rewritten as a new
variational problem:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

ð
U

v2pl
vt2

qdxdzþ
ð
U

v2Vpl,Vqdxdz

¼
ð
U

hðx; z; t; xsÞqdxdz; cq2Hl;

plðx; z; tmaxÞ ¼ bpstmax
ðx; zÞ;

plðx; z; tmax � DtÞ ¼ bpstmax�Dt
ðx; zÞ;

plðx; z; tÞjvU ¼ 0:

(14)

Let

Nj ¼ ½j1 j2 / jl�T ; W ¼ Wð:;1 : lÞ;
Ps;l ¼ ½Plð1; tÞ Plð2; tÞ / Plðl; tÞ�T ;

we can get the l � order ROM:

M
d2Ps;lðtÞ

dt2
þ KPs;lðtÞ ¼ FðtÞ; (15)

where
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M ¼
ð
U

NjN
T
jdxdz ¼ W

T
MW;

K ¼
ð
U

v2VNj,VN
T
jdxdz ¼ W

T
KW;

FðtÞ ¼
ð
U

hðx; z; t;xsÞNjdxdz:

Finally, we can realize the reconstruction of the sourcewavefield
by discretizing Eq. (15) with the central differencing method:

MPj�1
s;l ¼ ð2M � Dt2KÞPjs;l �MPjþ1

s;l þ Dt2F
j
;

pjs;l ¼ Pjs;l
T
Nj þ pvUðx; y; jDtÞ;

j ¼ J; J � 1;…;0:

(16)

The L2-error between the POD-FEM solution ps,l(x, z, t) and the
FEM solution ps,h(x, z, t) can be expressed as (Luo et al., 2012)

O

 
Dt
Xr

i¼lþ1
si

!1=2

;

which indicates that the error between the POD-FEM reconstructed
result and the forward computed result is determined only by the
time interval and the singular values we choose.

Therefore, we can use the parameter

z ¼
Xl

i¼1
si

,Xr

i¼1
si � 100%; (17)

to decide a proper order l.
Typically, z should be taken to 99% or higher (Bui-Thanh et al.,

2004; Lu et al., 2019) to avoid significant error. When the number of
snapshots L is small, we can directly set the l to L. However, with the
increase of the modeling time, the size of the snapshot matrix P gets
larger. At this point, setting l to Lwill cause a high-order ROM, while
finding a proper order l by a complete SVD will cost substantial
computational resources. Inotherwords, bothapproacheswill reduce
the modeling efficiency. Therefore, we introduce a parameter D, and
divide the time period [0, tmax] into D segments. In each segment, we
only use the stored snapshots in the corresponding time period to
construct the POD basis functions and apply the above algorithm to
realize the sourcewavefieldreconstruction. In thisway, theorder l can
befixedas

�L
D

	
. It cannotonlysatisfy thedemandofaccuracy (z>99%),

but also avoid the complete SVD of the snapshot matrix P.
2.5. Storage analysis

In this section, we use quantitative analysis to compare the
storage requirement for the source wavefield reconstruction be-
tween the FSM and the POD-FEM.

For triangle-element-based FEM modeling, the minimum side
length of the triangle mesh is determined by

h ¼ vmin
Gf0

;

where vmin is the minimum velocity of a given model and G is the
assigned number of points per wavelength (NPPW) corresponding
to the dominant frequency of the source wavelet.

On the other hand, the stability condition of FEM modeling can
be expressed as



Fig. 1. (a) The Ricker wavelet with a dominant frequency of 15 Hz; (b) the frequency spectrum of (a).

Table 1
The effect of z on the accuracy and CPU time of the POD-FEM with different orders.

Order 10 30 50 70 90

z 58.5952% 97.9118% 99.9527% 99.9983% 100%
Maximum error 72.8869% 9.1919% 1.1747% 0.0879% 0.0976%
CPU time 46.1706% 67.6482% 71.1876% 89.5290% 100%
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Dt � q
h

vmax
¼ aq

Gf0
;

where q is the courant number of the corresponding discrete form,
vmax is the maximum velocity of a given model and a ¼ vmin/vmax.

Hence, we need to store

NFSM ¼ tmax

Dt
� Gf0tmax

aq

number of snapshots for the FSM.
As shown in our previous analysis, the sampling frequency for

storing the source wavefields in POD-FEM modeling should be
greater than fN ¼ 6f0. Therefore, the sampling interval can be set as
Fig. 2. (a) The forward computed source wavefield and the reconstructed source wavefield
frequencies: (b) 1000 Hz; (c) 90.9 Hz; (d) 62.5 Hz.
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Dtrecord ¼ 1
fN
;

which means we only need to store

NPOD ¼ tmax

Dtrecord
¼ 6f0tmax

number of snapshots for the POD-FEM.
at 0.34 s for the homogeneous model computed by POD-FEM with different sampling



Table 2
The effect of D on the accuracy and CPU time of the POD-FEM.

D 1 2 4 8 16 32

Maximum error 0.0791% 0.1155% 0.1019% 0.1173% 0.2953% 0.2421%
CPU time 100% 52.3565% 31.0642% 20.2954% 17.2010% 14.7286%

Fig. 3. The seismograms comparison between different methods recorded at (100 m, 100 m) for the homogeneous model. Trace 1 is the forward computed result, traces 2, 3, 4, 5, 6,
and 7 are the reconstructed result computed by the POD-FEMs with D ¼1, 2, 4, 8, 16, and 32, respectively. Traces 8, 9, 10, 11, 12, and 13 are the differences ( � 102) between 2, 3, 4, 5,
6, 7, and 1, respectively.

Fig. 4. Layered velocity model.
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Hence, the ratio of the storage requirement between the FSM
and the POD-FEM can be expressed as:

R ¼ NFSM

NPOD
� G

6aq
:

In FEM modeling, the NPPW G for the P1 element should be
greater than 19 to avoid significant numerical dispersion (Cao et al.,
2015), and the courant number q ¼ 0.707107 (Liu et al., 2014a).

Therefore,

R � 4:48
a

� 4:48;

if we use the linear basis functions in modeling.
For higher-order basis functions, we can reduce the NPPWG, but

the stability condition is more stringent, whichmeans that the ratio
R would still be significantly greater than 4.

In other words, our method can achieve more than 80% savings
of memory compared with the FSM, and the reduction would be
more significant for a model with larger velocity range.
3. Numerical experiments

In this section, we first carry out a test on the homogeneous
model to verify the effect of the parameters fs, z and D on the ac-
curacy of the POD-FEM. Then, we use the layered model and part of
the Marmousi model to compare the accuracy, memory usage and
computational efficiency of our POD-FEM source wavefield recon-
struction method with the FSM and the BVM. The calculation is
done on the computing platform (Intel(R) Xeon(R) Silver 4216 CPU
@ 2.10 GHz, 128 GB of memory, and MATLAB codes) and we use the
second-order basis functions in the following test.
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3.1. Homogeneous model

The size of the homogeneous model we use is 1000m� 1000 m
and the velocity is 1500 m/s. The Ricker wavelet with a dominant
frequency of 15 Hz is placed at (xs, zs)¼(500 m, 500 m). We dis-
cretize this model by triangular meshes, and then get 20000 ele-
ments and 40401 nodes.

The time increment is set to 1 ms and the maximum time is 1 s.
We first test the effect of fs on the accuracy of the POD-FEM. In the
process of the forward computation, the thicknesses of the PML Lx
and Lz are set as 200 m and we store the source wavefields every 1,
11, and 16 time steps, respectively. We fix the parameter D as 1 and
the order l of the ROM as 90.

Fig. 2a shows the forward computed snapshot at 0.34 s, and
Fig. 2b, c and d show the reconstructed wavefield at 0.34 s
computed by POD-FEM with different sampling frequencies fs,
respectively. There is no significant difference between Fig. 2a, b



Fig. 5. The reconstructed source wavefield at 0.75 s for the layered model computed by (a) FSM; (b) BVM; (c) POD-FEM. (d) The difference between (a) and (c).
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and c, while the obvious artifacts in Fig. 2d can be identified.
To give a quantitative comparison, we use

error ¼ jps
�
x; z; tj

�� pre
�
x; z; tj

�j
kps�x; z; tj�kL∞ ;
to measure the accuracy of the reconstructed wavefield at a fixed
moment tj, where ps(x, z, tj) is the forward computed source
Table 3
Accuracy, CPU time and memory usage of different methods in Fig. 5.

Scheme FSM BVM POD-FEM

Maximum error 0% 0% 0.1517%
CPU time 0% 100% 40.3686%
Memory 100% 1.9268% 10.9133%

Fig. 6. The seismograms comparison between different methods recorded at (a) (500 m, 10
computed, BVM and POD-FEM results, respectively. Traces 4 and 5 are the differences ( � 1
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wavefield and pre(x, z, tj) is the reconstructed source wavefield.
The maximum error of the above POD-FEM results with sam-

pling frequencies of 1000, 90.9 and 62.5 Hz are 0.0022%, 0.0976%
and 10.5981% respectively, which indicates that the accuracy of the
POD-FEM satisfies the requirements of practical applications when
the sampling frequency fs � fN. Although the error of the POD-FEM
decreases with the increase of fs, we set fs as fN to savemore storage.

We then test the effect of the order l on the maximum error and
CPU time of the POD-FEM. The sampling frequency fs is now fixed as
90 Hz, and we perform a complete SVD for the snapshot matrix P in
this test to get the exact z for the ROM with different l. Table 1
shows the corresponding results. With the increase of l and z, the
maximum error between the forward computed wavefield and the
reconstructed source wavefield at 0.34 s is reduced significantly.
Specifically, the error is acceptable when z > 99%. The CPU time is
proportional to z, which means that the computational efficiency
0 m) and (b) (1000 m, 200 m) for the layered model. Traces 1, 2, and 3 are the forward
02) between 2, 3, and 1.



W.-Z. Tan, B.-Y. Wu, R. Li et al. Petroleum Science 20 (2023) 199e211
will be affected if l is too large. Therefore, it is necessary to use the
parameter D to avoid an excessively large order l.

To illustrate the effect of D, we choose different D for simulation.
The maximum time is set to 4 s; the source term and the meshing
are same as previous tests. Table 2 shows the accuracy and the CPU
time of the modeling with different D, which indicates that, with
the increase of the D, the maximum error between the forward
computed wavefield and the reconstructed source wavefield at
0.34 s gets larger gradually. The CPU time reduces with the increase
of D, but the reduction is getting smaller when D > 8. This is mainly
caused by the increasing magnitude of the SVD. Therefore, we can
fix D as 8 to achieve high accuracy and efficiency in source wave-
field reconstruction.

Fig. 3 displays the seismograms in time domain recorded at
(100 m, 100 m) for the homogeneous model. Trace 1 is the forward
computed result, while traces 2, 3, 4, 5, 6, and 7 are the recon-
structed results computed by the POD-FEM with D ¼1, 2, 4, 8, 16,
and 32, respectively. Traces 8, 9, 10, 11,12, and 13 are the differences
(� 102) between 2, 3, 4, 5, 6, 7, and 1, respectively.With the increase
of the D, the error of POD-FEM result also increases in the time
domain, but there is no obvious error accumulation.
Fig. 7. The RTM results for the layered model computed by (a) BVM; (b) POD-FEM. (c)
The difference between (a) and (b).
3.2. Layered model

We next perform the test on a layered model, which is shown in
Fig. 4. The Ricker wavelet with a dominant frequency of 15 Hz is
placed at (xs, zs)¼(700 m, 0 m). After discretizing this model by the
triangular mesh, we obtain 45000 elements and 90601 nodes. The
time increment is set as 1 ms and the maximum time is 2 s. In the
process of the forward computation, the thicknesses of the PML Lx
and Lz are set as 300 m. We store the source wavefields every 11
time steps and store all the boundary values. The parameter D is
fixed as 8, and the order l of the ROM is 23.

Fig. 5a, b and c show the reconstructed sourcewavefield at 0.75 s
for this model computed by FSM, BVM and POD-FEM, respectively,
while Fig. 5d shows the difference between Fig. 5a and c. There is no
visible difference between these snapshots.

Table 3 shows the quantitative comparison of these methods for
the layered model. With a 0.1517% error, the POD-FEM can save
89.0867% of memory compared with the FSM, which is consistent
with our analysis. The CPU time of the POD-FEM is 40.3686% of that
of the BVM, and it can be reduced further if we use the consistent
mass matrix, since the application of the lumped mass technology
avoids having to solve the large scale linear equations for the BVM.

Fig. 6a and b displays the seismograms in the time domain
recorded at (500 m, 100 m) and (1000 m, 200 m), respectively.
Traces 1, 2, and 3 are the forward computed, BVM and POD-FEM
results, respectively. Traces 4 and 5 are the differences ( � 102)
between 2, 3, and 1. Although the error of the POD-FEM is more
obvious in the time domain compared with the BVM, it won't
seriously impact the imaging results because the error is mainly in
the direct wave.

To illustrate the effects of the POD-FEM for prestack RTM, we
migrate the synthetic data computed for this layered model. We
shot from 0 m to 1500 m on the surface with an interval of 100 m
and in total get 16 shots. Receivers are spread on both sides of the
shot point with an equal distance of 10 m. The source term and
the time increment are the same as before. Fig. 7a and b displays
the RTM results computed by the BVM and the POD-FEM
respectively, while Fig. 7c is the difference between Fig. 7a and
b. The RTM results show the subsurface structures of the layered
model well, and the maximum error between Fig. 7a and b is
0.5523%, which indicates that our POD-FEM won't bring in
additional artifacts.
207
3.3. Marmousi model

Finally, we test on part of the Marmousi model to verify the
effectiveness of the POD-FEM for a model with complex subsurface



Fig. 8. Part of the Marmousi velocity model.

Table 4
Accuracy, CPU time and memory usage of different methods in Fig. 9.

Scheme FSM BVM POD-FEM

Maximum error 0% 0% 0.1617%
CPU time 0% 100% 30.1619%
Memory 100% 0.6696% 5.1981%
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structures. In order to better mute the direct wave, we add some
water layers. The model is shown in Fig. 8. We set the Ricker
wavelet with a dominant frequency of 15 Hz at (xs, zs) ¼(2200 m,
0 m) as the source term. With the triangular mesh, we get 196000
elements and 393261 nodes. The time increment is set as 0.5 ms to
obtain stable results and the maximum time is 3.5 s. In the process
of the forward computation, the thicknesses of the PML Lx and Lz
are set as 500 m. We store the source wavefields every 22 time
steps and store all the boundary values. The parameter D is fixed as
8, and the order l of the ROM is 40.

Fig. 9a, b and c show the reconstructed source wavefield at 1.5 s
for this model computed by FSM, BVM and POD-FEM, respectively,
while Fig. 9d shows the difference between Fig. 9a and c. There is
still no visible difference between these snapshots, which means
that the accuracy of the POD-FEM is acceptable even on a complex
model.

Table 4 shows the quantitative comparison of these methods for
part of the Marmousi model. With a 0.1617% error, the POD-FEM
Fig. 9. The reconstructed source wavefield at 1.5 s for part of the Marmousi model com
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can save 94.8019% of memory compared with the FSM. Compared
with the layeredmodel results, the memory saving of the POD-FEM
is more notable due to the larger velocity range of part of the
Marmousi model. The CPU time of the POD-FEM is 30.1619% of that
of the BVM, which means that the improvement of the efficiency
for the POD-FEM is more significant with the increase of the model
size.

Fig. 10a and b displays the seismograms in the time domain
recorded at (1000 m, 200 m) and (3000 m, 400 m), respectively.
Traces 1, 2, and 3 are the forward computed, BVM, and POD-FEM
results respectively. Traces 4 and 5 are the differences ( � 102)
between 2, 3, and 1. The waveforms between the forward and
reconstructed results fit well and there is still no obvious error
accumulation of our POD-FEM in the time domain for this complex
model.

We then shot from 500 m to 3800 m on the surface with an
interval of 100m and in total get 34 shots. A total of 96 receivers are
spread on both sides of the shot point with an equal distance of
25 m. The source term and the time increment are the same as
previous tests. Fig. 11a and b displays the RTM results computed by
the BVM and the POD-FEM respectively, while Fig. 11c shows the
difference between Fig. 11a and b. There is good consistency be-
tween these two images, and the maximum error between Fig. 11a
and b is 0.6218%. The above results show that our method can be
applied effectively in imaging.

4. Discussion

This paper discusses the application of the POD-FEM for the
puted by (a) FSM; (b) BVM; (c) POD-FEM. (d) The difference between (a) and (c).



Fig. 10. The seismograms comparison between different methods recorded at (a) (1000 m, 200 m) and (b) (3000 m, 400 m) for part of the Marmousi model. Traces 1, 2, and 3 are
the forward computed, BVM and POD-FEM results, respectively. Traces 4 and 5 are the differences ( � 102) between 2, 3, and 1.

W.-Z. Tan, B.-Y. Wu, R. Li et al. Petroleum Science 20 (2023) 199e211
reconstruction of the source wavefield in the process of 2D RTM.
Considering that the application of the corresponding method for a
3D realistic model requires more values, and hence more resource
costs, we discuss improvement in the possible reduction of storage
and improvement of efficiency for a 3D situation. Compared with
the 2D modeling, there is no additional computational strategy for
the 3D POD-FEM. Thus, the ratio of the storage requirement be-
tween the FSM and the POD-FEM in 3D modeling can still be
expressed as

R � G
6aq

:

Since the velocity range of the 3D realistic model would be
sharper, and the courant number qwould be more stringent for 3D
modeling, the ratio R would be greater than it is in 2D modeling,
which means one can save more storage.

From Eq. (11), the main calculation of the BVM is the multipli-
cation between the matrix and the vector. Namely, if there are N
nodes after the finite element discretization, the total computa-

tional cost for 3D BVM modeling is O
�
2JN2

�
, where J is the total

number of time steps. Then, the main calculation of the POD-FEM is

the SVD, whose cost is about O
�
4LN2

�
, and L is the number of the

snapshots we extract in modeling. Considering that Lz J
R, the main

calculation cost of the POD-FEM is about O
�
4
R JN

2
�
. As we showed

previously, the ratio R will be larger in 3D modeling. Therefore, we
may achieve a more significant improvement of efficiency for 3D
POD-FEM source wavefield reconstruction.
Fig. 11. The RTM results for part of the Marmousi model computed by (a) BVM; (b)
POD-FEM. (c) The difference between (a) and (b).
5. Conclusion

In this paper, we propose a POD-FEM based seismic source
wavefield reconstruction method for RTM. We use a low-
dimensional finite element space to approximate the Soblev
space and construct the POD basis functions based on the SVD.
After deriving the corresponding acoustic finite element equations,
we provide a detailed algorithm for reconstructing the source
wavefield by the POD-FEM. To further accelerate the computational
efficiency of the POD-FEM, we introduce the parameter D to divide
the whole time period into D segments, and construct a small
number of POD basis functions to get a lower ROM in each segment.
The numerical tests on the homogeneous model show that the
sampling frequency fs for storing the source wavefield can be set as
the Nyquist frequency, while the parameter D can be set as 8. The
numerical tests on the layered model and part of the Marmousi
model show the excellent balance of our method between
209
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computational efficiency and memory usage compared with the
FSM and the BVM. Specifically, the RTM results indicate that the
POD-FEM won't introduce additional artifacts and can be applied
well in imaging. Our method can be generalized to other wave
equations without further effort.
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