
lable at ScienceDirect

Petroleum Science 20 (2023) 295e308
Contents lists avai
Petroleum Science

journal homepage: www.keaipubl ishing.com/en/ journals /petroleum-science
Original Paper
A systematic machine learning method for reservoir identification and
production prediction

Wei Liu a, *, Zhangxin Chen a, Yuan Hu b, Liuyang Xu c

a Department of Chemical and Petroleum Engineering, University of Calgary, AB, Canada
b Rockeast Energy Ltd., Calgary, AB, Canada
c Jilin Oilfield, CNPC, Changchun, Jilin, 130000, China
a r t i c l e i n f o

Article history:
Received 15 February 2022
Received in revised form
1 September 2022
Accepted 5 September 2022
Available online 9 September 2022

Edited by Yan-Hua Sun

Keywords:
Reservoir identification
Production prediction
Machine learning
Ensemble method
* Corresponding author.
E-mail address: wei.liu2@ucalgary.ca (W. Liu).

https://doi.org/10.1016/j.petsci.2022.09.002
1995-8226/© 2022 The Authors. Publishing services b
creativecommons.org/licenses/by/4.0/).
a b s t r a c t

Reservoir identification and production prediction are two of the most important tasks in petroleum
exploration and development. Machine learning (ML) methods are used for petroleum-related studies,
but have not been applied to reservoir identification and production prediction based on reservoir
identification. Production forecasting studies are typically based on overall reservoir thickness and lack
accuracy when reservoirs contain a water or dry layer without oil production. In this paper, a systematic
ML method was developed using classification models for reservoir identification, and regression models
for production prediction. The production models are based on the reservoir identification results. To
realize the reservoir identification, seven optimized ML methods were used: four typical single ML
methods and three ensemble ML methods. These methods classify the reservoir into five types of layers:
water, dry and three levels of oil (I oil layer, II oil layer, III oil layer). The validation and test results of these
seven optimized ML methods suggest the three ensemble methods perform better than the four single
ML methods in reservoir identification. The XGBoost produced the model with the highest accuracy; up
to 99%. The effective thickness of I and II oil layers determined during the reservoir identification was fed
into the models for predicting production. Effective thickness considers the distribution of the water and
the oil resulting in a more reasonable production prediction compared to predictions based on the
overall reservoir thickness. To validate the superiority of the ML methods, reference models using overall
reservoir thickness were built for comparison. The models based on effective thickness outperformed the
reference models in every evaluation metric. The prediction accuracy of the ML models using effective
thickness were 10% higher than that of reference model. Without the personal error or data distortion
existing in traditional methods, this novel system realizes rapid analysis of data while reducing the time
required to resolve reservoir classification and production prediction challenges. The ML models using
the effective thickness obtained from reservoir identification were more accurate when predicting oil
production compared to previous studies which use overall reservoir thickness.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Big data of reservoir and oil production is exponentially
expanding. The traditional methods employed to identify reser-
voirs and predict their production cannot efficiently use historical
information and new data. Geologists conduct reservoir identifi-
cation based on large amounts of geophysical data and numerical
simulators cannot take full advantage of all the reservoir informa-
tion due to model scaling (Rodríguez et al., 2014; Siddiqi and
y Elsevier B.V. on behalf of KeAi Co
Andrew, 2002). Traditional reservoir simulators require a fixed set
of parameters, some of which are very difficult to obtain (e.g., skin
factor, compression index and capillary force) and other useful
parameters cannot be incorporated into these simulators (e.g., dy-
namic oil level). The combination of inaccurate data and missing
information results in miscalculations being used for prediction. In
the era of big data, it is increasingly necessary to develop an
effective and reliable technique that will maximize the benefits of
data explosion while making full use of massive reservoir data,
which will help resolve reservoir identification and production
prediction validity challenges.

Machine learning (ML) as a subdivision of artificial intelligence
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Nomenclature

AC Acoustic log
AI Artificial intelligence
ANN Artificial neural network
CART Classification and regression tree
DL Dry layer
DT Decision tree
FN False negative
FP False positive
GR Gamma ray
GBDT Gradient boosting decision trees
KNN k-nearest neighbors
LLD Deep laterolog
LR Logistic regression
MAE Mean absolute error
ML Machine learning
PER Permeability
POR Porosity
R2 Correlation coefficient
RF Random forest
RMSE Root mean squared error
SP Spontaneous potential
Sw Water saturation
TN True negative
TP True positive
WL Water layer
XGB XGBoost
IO I oil layer
IIO II oil layer
IIIO III oil layer
Day The number of production days
Fk(x) Predicted value in GBDT
fk Tree structure
Hh Hidden layers
hqðxÞ Prediction function of LR

kavg The mean of permeability values
Ldo A dynamic oil level
Lp Distance between samples
l Loss function
n Number of classifications
Rn Feature space
Srw The residual water saturation
T Thickness of the predicted IO and IIO
Tr Real thickness of IO and IIO
To Overall reservoir thickness
T 0 Number of leaf nodes
Vk A permeability variation coefficient
Wr The water content ratio in the first month
w Score on leaf node
whj Weight matrix between a hidden layer and the

output layer
wih Weight matrix between the input layer and a hidden

layer
x Original sample parameter
x' New parameter
Xmin Minimum value of sample
Xmax Maximum value of sample
Yj Output layerbyi Prediction
yi Observation
yk True value in GBDT
yobsi Observed data
ypredi Predicted data
favg Mean porosity value for each well
qh Threshold matrix associated with a hidden layer
qj Threshold matrix associated with the output layer
U Regularization term
g Parameter to control the regularization
l Parameter to control the regularization
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(AI) has been applied in various fields with a positive impact for
many years. Practical applications of ML techniques have been
widely investigated in petroleum engineering, including reservoir
characterization (Anifowose et al., 2017; Chaki et al., 2018), pre-
diction of reservoir properties (Helmy et al., 2013; Anifowose et al.,
2015; Priezzhev and Stanisalav, 2018) and production prediction
(Chakra et al., 2013; You et al., 2019). Some studies have applied ML
techniques to petroleum geology (Raeesi et al., 2012; Merembayev
et al., 2018) where several input parameters are selected related to
geological characteristics of a reservoir and its operating condi-
tions. To predict lithofacies or reservoir properties (e.g., porosity
and permeability), related well log data has been used to train a
predictive model. After learning the underlying relationship be-
tween input variables and an output target, this data-driven model
is finally applied to forecast specific lithofacies or reservoir
properties.

In the previous research, several ML techniques have been
introduced to solve classification and regression problems in pe-
troleum engineering and geology. Among them, artificial neural
network (ANN) and random forest (RF) are commonly used due to
their remarkable performance. The ANN technique has been
applied to lithology identification and recognition with well log
data (Ren et al., 2019; Kamenski et al., 2020) using the back prop-
agation neural network (BPNN) to find patterns that identify the
lithology. This technique has been used to predict oil production of
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existing wells (Awoleke and Lane, 2011; Van and Chon, 2018). To
forecast the oil production, well log data related to reservoir
geological characteristics and dynamic operation data have been
used to build a representative prediction model. The RF technique
has been applied to geological and geochemical data for lithology
identification by previous researchers. It outperforms other ML
algorithms in this area (Harris and Grunsky, 2015; Cracknell and
Reading, 2012). In addition to the classification performance, this
technique provides reliable predictions for geological mapping
applications (Radford et al., 2018).

Reservoir identification is the fundamental work necessary for
production forecasting. Most previous ML studies about reservoirs
were focused on lithofacies classification or reservoir properties
and very few mention reservoir identifications, let alone the com-
bination of reservoir identification and production prediction.
Historically, the prediction of oil production leaned heavily on the
overall thickness of reservoir as a key data input (Guo et al., 2021).
This technique oversimplified the reservoir which contains not only
the good oil layer, but other layers (water, dry and poor oil) that do
not or cannot produce oil. There is no proven direct relationship
between the overall thickness of reservoir and the volume of oil
production. For example, other conditions being equal, a 20-m-
thick reservoir A is theoretically predicted to produce more oil than
10-m-thick reservoir B. In fact, if reservoir A is mainly composed of
water and dry layers and reservoir B is formed by almost all good oil
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layers, the production of reservoir B will be better than that of
reservoir A. The heavily used method of predicting reservoir pro-
duction based on the overall thickness of reservoir is not accurate.
To solve this problem, before predicting the production in this
study, the reservoir was first classified by the five types of layers
found within a reservoir: water, dry and three different levels of oil
layers. Among these, I oil layer (IO) and II oil layer (IIO) were
defined as effective reservoirs producing industrial oil flows that
are perforated during production. In the subsequent production
prediction, the thickness of IO and IIO (effective thickness) was
used as an important variable instead of the overall reservoir
thickness commonly used by predecessors.

In this study, several ML methods were used and compared to
identify effective reservoirs in oilfields. To further predict their
production, this study implemented the prediction of cumulative
production for new wells and existing wells. This is different from
most previous studies on oil production which focused on subse-
quent production and production decline rates of existing wells.
The prediction of effective reservoirs and other production vari-
ables were used to train a predictive model for production. In this
way, an integrated ML system was developed that integrates the
whole industrial process from the reservoir identification to pre-
diction of oil production, increasing the accuracy and efficiency of
production prediction by making full use of the obtained results
from the reservoir identification process. Moreover, two reference
models were built to compare and prove that the prediction results
from the reservoir identification process were reliable enough to be
used in productionmodels. In referencemodel I (RM I), real data for
effective thickness (thickness of IO and IIO) was fed into ML pro-
duction models to compare with the production models based on
reservoir identification models. Reference model II (RM II) used the
overall reservoir thickness to compare the prediction result with
production models using effective thickness.

A MLmodel was used to predict and classify potential reservoirs
into several known reservoir types according to the selected input
features. Then, the predictive results from the reservoir identifica-
tion were fed into an ML model to predict oil production. The full
use of reservoir information increased the prediction accuracy of
the production models. This systematic ML method for reservoir
identification and prediction of oil production reduces required
human resources and thus reduces the volume of human errors.

2. Methodology

2.1. The systematic ML method

Fig. 1 is the flowchart illustrating the procedures of the study.
Firstly, in the reservoir classification process, seven ML models
(logistic regression (LR), k-nearest neighbors (KNN), decision tree
(DT), ANN, RF, gradient boosting decision trees (GBDT) and XGBoost
(XGB)) were compared to determine the best method for reservoir
classification. Then the predicted thickness of the effective reser-
voir combined with other production features were fed into the
production prediction process. In this process, after comparing all
the classification processes, 2 ML models (ANN and XGBoost) were
selected to predict the production. After training and testing, the
prediction results were compared to two reference models.

2.2. Pre-processing

In the process of the ML technique, various parameters (inputs)
fed into the models had different dimensional units that affected
the data analysis results. To eliminate the interference between
dimensional units, data preprocessing using normalization (Eq. (1))
was required to calculate different parameters (Raschka, 2015):
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x0 ¼ ðx�XminÞ=ðXmax �XminÞ (1)

where x is an original sample parameter; x' is the new parameter;
Xmin is theminimumvalue of the sample; and Xmax is themaximum
value of the sample.

2.3. Approach

The objective of this study was to provide an advanced and
alternative approach that accurately identifies a reservoir and
predicts oil production reliably. These two prediction tasks are
supervised learning problems as the samples have input features
and corresponding outputs. According to the types of predicting
results, reservoir identification is a supervised classification prob-
lem since its reservoir type as the output value is a discrete value.
The production prediction is a supervised regression problem
because production is a continuous value as output. For a classifi-
cation problem (reservoir identification), seven classifiers are
selected: LR, KNN, DT, ANN, RF, GBDT, and XGB. For a regression
problem (production prediction), ANN and XGB were selected to
show their predictive results due to their better performance when
compared to other ML methods. These classifiers are briefly
reviewed below.

2.3.1. Logistic regression
LR (Cox, 1958) is a regression analysis method where a depen-

dent variable is categorical and used for binary classification. It can
be generalized to multiclass problems. As shown in Eq. (2), LR uses
a nonlinear sigmoid function for classification prediction:

gðzÞ ¼ 1
1þ e�z (2)

Assume that the eigenvector influencing the prediction result is
x ¼ ð1; x1; x2;/; xnÞ and the regression coefficient is q ¼
ðq0; q1; q2;/; qnÞ; then we see that

q0 þ q1x1 þ q2x2 þ :::þ qnxn ¼
Xn
i¼1

qixi ¼ qTx (3)

We construct the prediction function as:

hqðxÞ¼ g
�
qTx
�
¼ 1

1þ e�q
Tx

(4)

If q is known, hq(x) can be used to calculate eigenvector x. If the
result is greater than 0.5, it is classified as 1; otherwise, it is clas-
sified as 0.

2.3.2. k-nearest neighbors
The classification rule of KNN is: the label of an unclassified

sample point is determined by the label of the maximum class in
the nearest k neighboring points (Liu et al., 2022). In this paper, the
Minkowski distance Lp was used as the metric for measuring the
distance between two sample points. Suppose that the feature

space is Rn, xi; xj2Rn, xi ¼
�
x1i ; x2i ;/; xni ;

�T
, xj ¼

ðx1j ; x2j ;/; xnj ; ÞT. The distance between xi and xj in Lp is defined as

follows:

Lp
�
xi; xj

�¼ Xn
l¼1

���xil � xj
ljp
!1�

p
(5)

where p is a parameter to determine the distance type; xj is a
training sample point; and xi is a point needed to predict the output



Fig. 1. Flowchart of the research progress.
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class. Therefore, p and k are two significant hyper-parameters when
building a KNN model.
2.3.3. Decision tree
Classification and regression tree (CART) is the most popular

algorithm used to build a DT. CART (Breiman et al., 1984) develops a
Gini index to choose a feature for splitting a tree. The Gini index
reflects the probability that two samples are randomly selected
from a data set and their labels (classes) are different. A lower Gini
index indicates greater purity of the data set.

If the sample set D is split into D1 and D2 using the discrete
feature A, the Gini index calculated after splitting is defined as:

Gain_GiniðD; AÞ¼ jD1j
jDj GiniðD1Þ þ

jD2j
jDj GiniðD2Þ (6)

Therefore, Gain_GiniðD; AÞ is the uncertainty after splitting. A
smaller Gain_GiniðD; AÞ value is preferred because this provides
greater purity for a data set.
2.3.4. Artificial neural network
ANN is a computing system that imitates the working of the

human brain in learning patterns from experience and processing
data to solve classification and regression problems. ANN is
comprised of an input layer, hidden layersHh and an output layer Yj.
The hidden layers need to be artificially set according to an actual
situation so that a model can achieve the best prediction outcome.

For a classification problem in this study, the activation function
used in a hidden layer is a Sigmoid function (Eq. (7)), while the
activation function used in the output layer is a Softmax function
(Eq. (8)) to solve a multi-class problem:
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Hh ¼ f

 X
i

wih,Xi � qh

!
¼ 1

1þ e
qh�
P
i

wih,X i
(7)

Yj ¼ f

 X
h

whj ,Hh � qj

!
¼ e

P
h

whj,Hh�qj

Pn
i¼1

e

P
h

whj,Hh�qi
(8)

where wih is the weight matrix of the node connections between
the input layer and a hidden layer; whj is the weight matrix of the
node connections between a hidden layer and the output layer; qh
is the threshold matrix associated with a hidden layer; qj is the
threshold matrix associated with the output layer; and n is the
number of classifications.

In Eq. (9), a ReLU activation functionwas applied in this study to
solve a regression problem:

ReLUðxÞ¼
�
x if x>0
0 if x � 0 (9)
2.3.5. Random forest
RF is an ensemble learning method. It establishes an advanced

model based on a bagging technique (Breiman, 1996) and a random
feature selection technique (Ho,1998). Bagging is amethod used for
sampling randomly with replacement and helps to generate several
new single trees to reduce variance. For example, to solve a reser-
voir identification problem by RF, each tree provides the prediction
of a possible reservoir type. The final decision depends on the
majority voting from single trees. The random feature selection
technique is useful to make all the trees uncorrelated and further
reduce the variance of prediction.
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2.3.6. Gradient boosting decision trees
Different from RF, GBDT is an ensemble ML tool using a boosting

technique, which sequentially generates base models and improves
the predictive power of the ensemble through incremental mini-
mization of residual errors in each iteration of construction of a
new base model (Brown and Mues, 2012). While building a clas-
sification model in GBDT, samples that are misclassified in a pre-
vious base model are more likely to be assigned an increased
weight in the next step. The new model has improved prediction
accuracy compared to a previous model. A loss function is used to
measure the difference between the predicted FkðxÞ and true values
yk to indicate how well a model fits the data.

In a GBDT algorithm for a multi-class problem, the loss function
is (Friedman, 2001):

L
�
fyk; FkðxÞgK1

�
¼ �

XK
k¼1

yk log pkðxÞ (10)

where yk ¼ 1 (class ¼ k) 2 {0,1}, pkðxÞ ¼ P (yk ¼ 1jx), and

pkðxÞ¼ expðFkðxÞÞ
,XK

l¼1

expðFlðxÞÞ (11)

2.3.7. XGBoost
XGB is one of the most popular methods in the ensemble ma-

chine learning category today. It performs very well in multiple
programming competitions like Kaggle (Chen and Guestrin, 2016).
XGB is a machine learning technique for classification and regres-
sion problems. It produces a prediction model in the form of an
ensemble of weak predictionmodels, typically decision trees. Based
on the concept of GBDT, XGB uses a regularized model formaliza-
tion to control over-fitting, which leads to better performance.

Distinct from GBDT, the objective function of XGB consists of a
loss function and a regularization term (Chen et al., 2016):

L¼
X
i

lðbyi; yiÞ þX
k

UðfkÞ (12)

Uðf Þ¼gT 0 þ 1
2
lkwk2 (13)

where l is a loss function as in GBDT, and measures a difference
between prediction byi and observation; A regularization term U is
added in the objective function to control over-fitting and
contribute to better performance and flexible complexity; fk rep-
resents a specific tree structure; T 0 andw denote the number of leaf
nodes and the score on each node respectively; g and l are pa-
rameters to control the regularization.

2.4. Evaluation metrics

Evaluation metrics are essential to measure the quality of a ML
model. It is worth noting that different types of evaluation metrics
are applicable to different tasks and emphasize different aspects of
a model's performance (Andika and Chandima Ratnayake, 2019).
For example, accuracy is often selected for its easy-to-use scoring
and flexibility for multiclass problems (Hossin and Sulaiman, 2015).
The root mean squared error (RMSE), mean absolute error (MAE),
and correlation coefficient (R2) measures are popular for their
effectiveness and common use to solve regression problems in
many petroleum applications (Abdulraheem et al., 2007; Chakra
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et al., 2013). In this study, to deal with a reservoir
identificationeclassification problem and a production
predictioneregression problem separately, two sets of metrics
were selected and introduced below.
2.4.1. Classification problems
Before discussing the metrics for a classification problem, it is

necessary to introduce four elements in a binary problem: true
positive (TP), false negative (FN), false positive (FP) and true
negative (TN). The ‘true’ and ‘false’, respectively, mean whether a
prediction is correct or not compared to real data. The ‘positive’ and
‘negative’ represent whether a prediction class is the same as a
specific class or not. To assess the predictive performance of the
above classifiers and select the corresponding optimal models, a
matrix of accuracy, precision, recall and f1 score are evaluated.
Accuracy is based on the ratio of correctly predicted samples to the
total samples. Precision is defined as the ratio of correct positive
predictions. Recall is the ratio of actual positive results correctly
predicted. f1 score is the harmonic mean of the precision and recall.
The higher the f1-score value the better precision and recall.

accuracy¼ TPþ TN
TPþ TNþ FPþ FN

(14)

precision¼ TP
TPþ FP

(15)

recall¼ TP
TPþ FN

(16)

f1¼2
1

1
=recallþ 1

=precison
¼ 2

precison,recall
precisonþ recall

(17)
2.4.2. Regression problems
In this study, the following measurements were applied to

substantiate the statistical accuracy of the performance of ANN and
XGB for production prediction: RMSE, MAE, and R2. The RMSE is a
measure of the spread of actual values around the average of the
predicted values. It computes the average of the squared differ-
ences between each predicted value and its corresponding actual
value. It is expressed as:

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

�
yobsi � ypredi

�2vuut (18)

where yobsi is the observed data; ypredi is the predicted data; and n is
the number of data points. The MAE is a statistical measure of
dispersion. It is computed by taking the average of the absolute
errors of the predicted values relative to the actual values. It is given
by:

MAE¼
Pn

i¼1

���yobsi � ypredi

���
n

: (19)

R2 assesses the quality of a model prediction by observing the
difference between predicted data and actual data (Nash and
Sutcliffe, 1970). It is expressed as:
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R2 ¼ 1�
Pn

i¼1

�
yobsi � ypredi

�2
Pn

i¼1

�
yobsi � yobsi

�2 (20)

where yobsi is the average value of the observed data.

3. Case studies

3.1. Reservoir identification

The data was acquired from a public domain of China National
Petroleum Corp. (CNPC). It is comprised of logging data and layer
thickness (eight features) from 124 wells. A total of 2800 samples
(single layers) made up the dataset. Seven ML models (LR, KNN, DT,
ANN, RF, GBDT and XGB) were constructed involving one output
variable reservoir classification for each single layer and a total of
eight input features (see description in Table 1 below) including
LLD, GR, AC, SP, POR, PER, SW and the thickness of each layer. Table 1
shows details and statistical descriptions of input features used for
reservoir identification. The output reservoir classification includes
five classes: 1) Dry layer (DL) - no oil, gas or formation water, 2)
Water layer (WL) - only containing formation water, and 3) three
levels of oil layer - IO, IIO and III oil layer (IIIO). Among these three
types of oil layers, IO and IIO were defined as effective reservoir for
their high and medium industrial value and IIIO is defined as a
worthless reservoir due to its poor industrial value as assessed by
CNPC.

After data pre-processing, the samples were randomly split into
a training set of 2500 samples and a testing set of 300 samples. The
training set is used to develop a model to perform a single layer
classification and the testing set is applied to the trained model to
estimate how well the model has been trained. A hyper-parameter
tuning process and 10-fold validation were used in the seven
classifiers to choose the best combination of hyper-parameter
values for each model. In this study, Grid Search is used to find
the optimal hyper-parameters of a model that results in the most
accurate predictions. Grid Search is a function that comes in Scikit-
learn's model_selection package. Firstly, the values of hyper-
parameters were passed to the Grid Search function by defining a
dictionary containing a particular hyper-parameter along with the
values it can take. Then Grid Search tries all the combinations of the
values passed in the dictionary and evaluates the model for each
combination using the 10-fold validation method. After using this
function, the optimal combination of hyper-parameters with the
highest prediction accuracy can be selected.

3.2. Prediction of production

In this case study, five different ML methods (DT, ANN, RF, GBDT
and XGB) were compared for the prediction of production. After
comparison, ANN and XGB demonstrated the best performance
Table 1
Description of input features in reservoir identification.

Feature Nomenclature Unit Min Mean Max

LLD Deep laterolog U m 8.2 58.5 24,430
GR Gamma ray API 23.2 68.1 127.6
AC Acoustic log ms/m 169.1 236.3 411.5
SP Spontaneous potential mV �157 �15.9 28.2
POR Porosity % 0.1 10.3 23.3
PER Permeability mD 0.01 14.7 1976.9
Sw Water saturation % 0.1 76.2 291.6
Thickness Thickness of each layer m 0.7 3.2 40.8

300
amongst the methods. These two methods were employed to
forecast the oil recovery performance for a series of producing
wells. ANN and XGB models were respectively constructed with
one output variable which is the single well's first five months
cumulative oil production. Eight input variables were used: 1)
T ¼ the total thickness of IO and IIO (effective thickness) obtained
from the results of reservoir identification, 2) favg ¼ the mean
porosity value for each well, 3) kavg ¼ the mean of permeability
values, 4) Vk ¼ a permeability variation coefficient (Eq. (21)), 5)
Srw ¼ the residual water saturation, 6)Wr¼ the water content ratio
in the first month, 7) Ldo ¼ a dynamic oil level, and 8) Day ¼ the
number of production days. To be as representative as possible, favg
and kavg are weighted averages in T. Table 2 shows the unit and
statistical descriptions of input features in prediction of oil
production.

Vk¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðKi � KÞ2
.
n

s
K

(21)

where Ki is the permeability of a single layer; K is the average
permeability of all layers; and n is the number of layers in the well.

All 124 well records were subjected to the pre-processing stage
mentioned above. They were all used in the training and testing
phases of ANN and XGB. The best constructions of ANN and XGB
models were determined by a grid search. Two thirds of the original
data were used as a training data set. The remaining one third was
employed as the testing data set. Finally, to verify whether the
prediction result in Section 3.1 was reliable enough to be used for
production prediction and to show its superiority compared to
previous studies, the final prediction results were compared to two
reference models. In RM I, Tr is the thickness of real IO and IIO. In
RM II, To is the overall reservoir thickness.
4. Results and analysis

4.1. Comparative analysis of classification models for reservoir
identification

4.1.1. Results of training and validation
In a hyper-parameter tuning process, accuracy is used as the

metric to measure the model performance. Table 3 shows the
optimal hyper-parameter combination of each classification model
builds the best predictive model.

Accuracy, precision, recall and f1-score were used to evaluate
the performance of the seven ML methods using the 10-fold-cross-
validation. In Fig. 2, a box-and-whisker plot was utilized to assess
the statistical dispersion of each classifier's accuracy on all folds
based on their optimal hyper-parameters, respectively. Single
classifiers showed reasonable performance in terms of average
value of accuracy e ANN (82.61%), KNN (82.58%), DT (80.87%) and
LR (73.89%). XGB, RF and GBDT had the top three average accuracies
Table 2
Description of input features in production prediction.

Feature Unit Min Mean Max

T m 3.4 39.9 107.5
favg % 5.4 12.1 17.5
kavg mD 0.7 30.2 533.4
Vk / 58.2 0.1 936.6
Srw % 30.3 48.7 66.3
Wr % 0.5 23.9 100
Ldo m 70.1 1518.3 2243.5
Day day 6 109 145



Table 3
Tuned optimal hyper-parameter values of seven classification methods.

Classification method Tuned hyper-parameter Optimal hyper-parameter setting

LR Penalty parameter determining the strength of regularization (penalty) L2
KNN The number of neighbors (k)

The number used to calculate distance (p)
7
6

DT The maximum number for tree depth (max depth)
The minimum number of samples required to split an internal node (min samples split)

10
5

ANN Learning rate
Maximum number of learning iterations (max iter)
Solver for weight optimization (solver)

0.01
500
Adam

RF The number of trees in the forest (n estimators)
The maximum depth of the individual estimators (max depth)

200
7

GBDT Learning rate
The number of estimators in a model (n estimators)
The maximum depth of individual estimators (max depth)

0.3
500
15

XGB Learning rate
The number of estimators in a model (n estimators)
The maximum depth of individual estimators (max depth)

0.1
500
10

Fig. 2. Box plots for accuracy of seven ML methods from 10-fold cross validation.

Table 5
Number of samples in each type of layer.

DL WL IO IIO IIIO

Training set 739 506 628 554 73
Testing set 79 74 72 66 9
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(91.74%, 89.36%, and 89.25%, respectively). This is interpreted as
validation of the ensemble classification techniques (RF, GBDT and
XGB) to generally produce better results than single classifiers (LR,
KNN, DT and ANN). Despite some outlier points, the accuracy value
of GBDT and XGB had the least variance and the highest stability.
XGB had the highest average accuracy.

Table 4 shows the precision, recall and f1-score of each reservoir
class for seven ML methods. In the identification of the five reser-
voir classes, DL and IO had the highest prediction accuracy. The IIIO
Table 4
Precision, recall and f1-scores for 10-fold cross validation for seven classifiers.

Method Output reservoir Precision Recall f1-score

LR DL 0.82 0.87 0.84
WL 0.76 0.57 0.65
IIIO 0.40 0.21 0.28
IIO 0.69 0.72 0.70
IO 0.82 0.83 0.82

DT DL 0.85 0.81 0.83
WL 0.61 0.68 0.64
IIIO 0.38 0.25 0.30
IIO 0.74 0.76 0.75
IO 0.86 0.82 0.84

RF DL 0.88 0.94 0.91
WL 0.83 0.70 0.80
IIIO 0.73 0.68 0.70
IIO 0.80 0.84 0.82
IO 0.92 0.88 0.90

XGB DL 0.90 0.94 0.91
WL 0.83 0.84 0.83
IIIO 0.82 0.81 0.82
IIO 0.84 0.86 0.85
IO 0.93 0.92 0.92
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class is likely to be misclassified as another kind of reservoir
because there were very few original samples labeled as class IIIO.
Table 5 shows the number of samples used for each type of reser-
voir during the training and testing process. The IIIO class reservoir
makes up about 10% of the samples compared to the other types of
reservoirs. The lack of samples leads to poor learning performance
for every ML method. The overall performance of three ensemble
ML methods was better than the other four single methods for
identification of the five reservoir classes. After ensemble methods,
ANN was the best classifier as a single method, but its precision of
IIIO was only 0.58 and prediction performance of other reservoir
types were all much weaker than the ensemble classifiers. As the
effective reservoir, the identification of IO and IIO is more impor-
tant than that of other reservoir classes. XGB had the best perfor-
mance with all metric values � 0.92 in the IO class identification
and up to 0.86 in the IIO class identification, followed by GBDT. The
results of Fig. 2 and Table 4 indicate that the ensemble methods
Method Output reservoir Precision Recall f1-score

KNN DL 0.87 0.90 0.89
WL 0.78 0.68 0.73
IIIO 0.45 0.60 0.51
IIO 0.77 0.78 0.77
IO 0.88 0.85 0.85

DT DL 0.88 0.90 0.89
WL 0.82 0.74 0.78
IIIO 0.58 0.64 0.61
IIO 0.77 0.81 0.79
IO 0.89 0.88 0.88

GBDT DL 0.89 0.93 0.91
WL 0.81 0.77 0.79
IIIO 0.80 0.76 0.78
IIO 0.82 0.85 0.83
IO 0.92 0.91 0.91



Fig. 3. Confusion matrix plots of single methods on the test dataset: (a) LR model; (b) KNN model; (c) DT model; (d) ANN model.
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achieved better classification results compared to the other four
single methods. Among the ensemble methods, XGB and GBDT are
preferred for their higher accuracy, precision, recall and f1-scores.

4.1.2. Results of testing
Figs. 3 and 4 present the reservoir classes that were correctly

classified or misclassified in the test dataset for single models and
ensemble models. The testing result showed that LR, KNN and DT
predict DL and IO with an accuracy greater than 0.8. ANN provided
the best identification performance for a single method, but the
prediction accuracy for each reservoir was still lower than the
ensemble methods. This was consistent with the results from a 10-
fold cross validation. In the confusion matrices below, XGB is the
optimal MLmethod for overall performance. It identified IO, IIO and
DL with �0.9 accuracy. Even training with very few samples in IIIO
class, XGB still predicted this reservoir with an accuracy up to 0.76.
The prediction of XGB was selected as the final reservoir identifi-
cation result from all the ML methods.

The confusion matrix result of XGB (Fig. 4c) shows the proba-
bility of a real IO reservoir being predicted as the IO reservoir was
92% and the probability of being predicted as the IO or IIO reservoir
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was up to 99%. This was interpreted to mean the probability of
being predicted as another type of reservoir (not an IO or IIO
reservoir) was only 1%. The probability of the real IIO reservoir
being predicted as the IIO reservoir was 90% and the probability of
being predicted as the IO or IIO reservoir was 95%, whichmeans the
probability of being predicted as another type of reservoir (any
reservoir except for IO or IIO) was only 5%. Although the prediction
accuracy of the XGBmodel for each type of reservoir was�92%, the
prediction success rate for effective reservoirs (IO and IIO) was very
high - up to 99%. Using the feature importancemethod, Fig. 5 shows
importance score ranking of different input features calculated by
XGB. Sw is the most valuable feature for reservoir identification.
POR and PER were the second and third most relevant features
contributing to accurate prediction. Thickness of reservoir is the
least important feature in this case.

To train and test the predictive model for reservoir identifica-
tion, the ANN model needs several minutes to finish the work,
while the other six ML models require several seconds. By contrast,
traditional methods used to identify a reservoir could bemuch time
consuming and require additional manpower. An experienced
geologist requires days or even weeks to complete the



Fig. 4. Confusion matrix plots of ensemble methods on the test dataset: (a) RF model; (b) GBDT model; (c) XGB model.

Fig. 5. Importance score rank of input features in reservoir identification.
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identification of thousands of reservoirs and the accuracy may not
reach 99% due to the human error. Other traditional methods based
on logging data need a lot of calculations, which are time
consuming and often as not as accurate as the identification
determined by a geologist. The ML method's speed of seconds or
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minutes for a highly accurate reservoir identification completely
supersedes traditional methods.

4.2. Analysis of regression models for production forecasting

4.2.1. ANN model
The ANNmodel configurationwas set to have two hidden layers

or three hidden layers, each with six nodes per layer. In Fig. 6, the
loss shown is the value of MAE plotted per number of epochs for
each ANN model configuration in the training and validation pha-
ses. The loss stabilized after 800 epochs and there was little further
decrease in the mismatch between ANN prediction and real target
values. To increase the accuracy of the ANN prediction, increasing
the number of hidden layers was necessary to learn more about the
relationship between the input variables and the output target.

A new configuration for ANN was built with four hidden layers,
each with six nodes, running 1000 epochs to train the model and
estimate the target. In Fig. 7, the loss curve in the training data
declines continuously and the loss of validation data begins to in-
crease after 100 epochs. This challenge is called overfitting. The



Fig. 6. Loss vs. epoch curve in the training data and the validation data: (a) Two hidden layered ANN model; (b) Three hidden layered ANN model.

Fig. 7. Loss vs. epoch curve of four hidden layered ANN model in the training data and
the validation data.

Table 6
Model results of ANN and two reference models.

Metrics Training Testing

ANN RM I RM II ANN RM I RM II

RMSE, ton 246.347 231.916 298.038 321.711 315.228 399.703
MAE, ton 174.183 166.374 235.917 258.414 250.341 356.315
R2 0.879 0.895 0.822 0.795 0.801 0.704
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model learns a great degree of error or random noise within
training data and then its predictive power is reduced. Finally, the
construction with four hidden layers, each with six nodes and
running 100 epochs were selected for the ANN model to forecast
the oil production.

Table 6 illustrates the model performance of ANN and two
reference models (RM I and RM II) in the prediction of production.
Fig. 8. Comparison of prediction performance (R2) of ANN and two reference models.
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The R2 of three models in training and testing process is compared
in Fig. 8. For the ANN model, the configuration with 100 epochs
provided a very reliable performance for estimating oil production
using predicted reservoir information in the training process,
where R2 was 0.879, MAE was 174.183 ton and RMSE was 246.347
ton. The testing result was satisfied with R2 being 0.795, MAE being
258.414 and RMSE being 321.711. To verify that the predicted
effective reservoir thickness could replace the true data, the
training and testing performance of RM I (using the real effective
reservoir thickness) was compared to the ANN model. In the
training and testing sets, the performance of RM I was only slightly
better than the ANN model in three metrics. The negligible differ-
ence between these two models proved the practicability of the
predicted effective reservoir. By contrast, RM II using the overall
reservoir thickness instead of effective reservoir thickness had a
weaker prediction performance than the ANNmodel in the training
and testing processes. In the RM II testing set, R2 was at 0.704, MAE
at 356.315 ton and RMSE at 399.703 ton, which meant RM II
accounted for 70.4% of the production variance in the research area
and on average there was more than 350-ton uncertainty in the
prediction of first 5months cumulative oil production for each well.
Therefore, the ANN model using predicted effective reservoir
thickness was applicable for its similar performance compared to
RM I and was much better than RM II with higher prediction ac-
curacy. Using R2 as the metric of accuracy for the testing process,
the prediction accuracy of the ANN model with effective reservoir
thickness was 13% higher than that of RM II.
4.2.2. XGB model
To determine the best combination of all hyper-parameter

values in an XGB model, a grid search was used in this study. A
limited number of values for each hyper-parameter were selected
because it is not feasible to try the entire range of possible values. In
the XGB model, three hyper-parameters were examined: (1) a
learning rate, (2) the number of estimators in themodel, and (3) the
maximum depth of the individual regression estimators. In the
learning rate, a value range of [0.1, 1], with 0.1 as the distance be-
tween two adjacent values, was assessed. For the number of esti-
mators, a value range of [10, 50, 100, 250, 500] was evaluated, while
a range of [1, 10], with 1 as the spacing between values was
examined for the maximum depth. After going through all the
possible combinations of the three hyper-parameters, the XGB
model was built with a learning rate of 0.1, 50 estimators and a
maximum depth of 4.

Table 7 and Fig. 9 show the prediction performance of the XGB



Table 7
Model results of ANN and two reference models.

Metrics Training Testing

XGB RM I RM II XGB RM I RM II

RMSE, ton 26.04 25.881 69.475 237.753 234.792 298.924
MAE, ton 18.807 18.094 57.153 189.962 187.028 257.936
R2 0.999 0.999 0.913 0.857 0.861 0.782

Fig. 9. Comparison of prediction performance (R2) of XGB and two reference models.
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model and its two reference models in three different metrics. XGB
had a very reliable performance estimating oil production with the
predicted reservoir data in the training and testing processes, with
R2 being 0.999 for training and R2 being 0.857 for testing. Like the
ANN model, the prediction results from training and testing of the
XGB model using the predicted effective reservoir thickness was
very similar to the prediction result of RM I with the real effective
reservoir thickness. RM II with overall reservoir thickness had a
lower prediction accuracy compared to the XGB model in the
training and testing sets. The XGB model using predicted effective
reservoir thickness was considered reliable because of its similar
performance compared to RM I and had a more accurate prediction
than RM II. In test datasets, the prediction accuracy (R2) of XGB
model with effective reservoir thickness was about 10% higher than
that of RM II.
4.2.3. Comparative analysis of ANN and XGB
Table 8 expresses the comparative performance of ANN and

XGB. XGB is preferred because it outperforms ANN in every eval-
uation metric for the training data and validation data sets. The two
methods perform better in the training dataset when compared to
the validation dataset. Different from ANN, the performance of the
training data in XGB was significantly better than that of the vali-
dation data. This is because in ANN, a larger epoch can increase the
learning and training accuracy, but at the same time it leads to an
overfitting problemwhere the model learns a great degree of error
or random noise within the training data and then its predictive
power is reduced. To avoid overfitting and to find the best valida-
tion accuracy, the learning accuracy must be limited. Fig. 9 shows
the cross plots of real oil production against predictions using the
ANN model and XGB model. In Fig. 10a and b, the prediction of the
ANNmodel performs well with training data and testing data, with
R2 being 0.8790 and 0.7950, separately. Fig. 9c and d provides the
prediction performance of the XGB model. Higher values of R2 in
Table 8
Comparative performance of ANN and XGB.

Metrics Training Testing

ANN XGB ANN XGB

RMSE, ton 246.347 26.04 321.711 237.753
MAE, ton 174.183 18.807 258.414 189.962
R2 0.879 0.999 0.795 0.857
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the training set (0.9986) and testing set (0.8575) prove the supe-
riority of XGB in the prediction of production compared to ANN.

Since XGB performed better than ANN for prediction of oil
production, the importance score of features in this case was
calculated based on the prediction of XGB. Fig. 11 shows the
importance score of different features using feature importance
method for the XGB, RM I and RM II models. All three models had
the same top 3 important features. Ldo was the most valuable
feature for the prediction of cumulative oil production; this cannot
be used in traditional simulations. Day andWrwere the second and
third most important features contributing to the prediction. In the
XGB model and RM I, T and Tr were the fourth most important
features and had very little difference. To in RM II was the least
important feature. To contributed less to the prediction of cumu-
lative oil production compared to T and Tr. The result was consistent
with the prediction performance of XGB model and reference
models.

From the algorithm perspective, it makes sense that XGB per-
formed better than ANN in these case studies. The twomethods are
important and widely used in data science research and by in-
dustry. These different machine learning methods perform differ-
ently for different types of tasks. ANN captures image, voice, text
and other high-dimensional data by modeling a spatiotemporal
location. The tree-based XGB handles tabular data well and has
some features that ANN does not have, such as interpretability of a
model, easier hyper-parameter tuning and a faster calculating
speed. In this study, it became obvious that compared to XGB, it is
tough work to find the best construction of ANN without over-
fitting. The calculating speed of XGB was nearly 100 times faster
than ANN in the process of production forecasting. XGB needed
only 2 or 3 s, while ANN required several minutes. The difference in
computational speed is attributed to: (1) using a backpropagation
process, the convergence rate of ANN is particularly slow and easily
falls into the local minimum (Ren et al., 2020); (2) compared to
ANN, XGB has a lower number of hyperparameters to be tuned; (3)
sparsity-aware split finding of XGB makes it find the optimal di-
rection and only non-missing observations are visited; (4) cache-
aware access and blocks for out-of-core computation make XGB
fast. Although the computing speed of ANN is slower than XGB,
XGB and ANN models have much faster prediction speed when
compared to traditional methods.

In the case of production forecasting, ANN and XGB models
show similar performance compared to their RM I. The results of
reservoir identification from classification models are reliable and
can be used in regression models for prediction of production. In
RM II, established ANN and XGBmodels provide higher accuracy for
predicting production. The combination of reservoir identification
and production forecasting in this study was meaningful and
valuable because the production was correlated with the thickness
of effective reservoirs rather than with the overall reservoir
thickness.

5. Conclusions

This paper developed an integrated ML system, formed by two
interconnected predictive models. It makes full use of historical
data and solves reservoir identification and production forecasting
problems, making the models faster and less labor-intensive than
traditional methods.

The results of reservoir identification revealed that ensemble
techniques (RF, GBDT and XGB) perform better than single classi-
fiers (LR, KNN, DT and ANN). The reservoir identification results of
XGB were selected because of the outperformance of XGB in all
evaluation metrics in the 10-fold-cross-validation and test process
when compared to the other methods. The prediction accuracy for



Fig. 10. Cross plots of real field cumulative oil production results vs. forecasts of established ANN model and XGB model: (a) Training set results of ANN model; (b) Testing set
results of ANN model; (c) Training set results of XGB model; (d) Testing set results of XGB model.

Fig. 11. Importance score rank of input features in prediction of cumulative oil
production.
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effective reservoirs (IO and IIO) was up to 99%.
Based on the prediction results of IO and IIO obtained from the

reservoir identification, the effective thickness (thickness of IO and
IIO) was an important input used in the production prediction
process to predict the cumulative oil production of single wells. The
very little difference (0.01 R2) between the prediction results of
established ANN/XGB model (based on predicted effective thick-
ness) and corresponding RM I (based on real effective thickness)
proved that the prediction of reservoir identification was suffi-
ciently accurate and could reliably be used in production fore-
casting. ANN and XGB models with effective thickness provided
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higher prediction accuracy than corresponding RM II (based on
overall reservoir thickness) in training and testing data sets. In
testing process, the R2 of XGB and ANN model using effective
thickness was 10% and 13% higher than that of RM II. The MAE and
RMSE of effective thickness-based models were much lower than
that of RM II, demonstrating the superiority of effective thickness-
based ML models for all metrics. XGB was better than ANN with a
higher prediction accuracy and faster computing speed.

In this study, the research data was mainly based on an oil
production data set from CNPC. The integrated ML system has
proven successful in the predictive test of CNPC's subordinate
blocks. In the future, introducing diverse data from different re-
gions may improve the ML models and perhaps make them
applicable on a global scale.
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Appendix A

Real data and prediction of XGB/ANN model from training
process in the case of production prediction.



No. Real production, ton Prediction of ANN, ton Prediction of XGB, ton

1 777 818.033 737.999
2 2173 2227.41 2178.62
3 2046 1579.29 2007.16
4 150 200.014 164.171
5 1963 1871.6 1952.42
6 2012 2044.98 2000.79
7 1845 1415.15 1829.8
8 852 1064.91 847.855
9 286 229.866 289.256
10 1933 1464.19 1906.82
11 104 262.904 107.727
12 704 653.465 703.937
13 1236 865.083 1233.67
14 712 581.236 668.307
15 19 3.78477 23.0181
16 482 319.131 497.908
17 1205 1454.17 1243.27
18 313 329.998 326.537
19 1607 1616.4 1587.17
20 480 475.354 483.264
21 5 1.02 23.8237
22 169 455.467 191.984
23 1716 1484.36 1709.92
24 1761 1250.75 1738.47
25 1115 794.688 1087.56
26 2085 1885.16 2040.46
27 26 54.2055 31.5974
28 376 380.011 372.154
29 188 235.632 178.401
30 519 453.608 504.225
31 146 411.423 180.163
32 2319 1777.83 2268.21
33 1497 1354.75 1529.09
34 1903 2210.43 1924.94
35 2141 2017.69 2138.54
36 566 841.086 606.211
37 18 19.7361 16.5283
38 496 868.637 499.08
39 1541 1731.59 1600.39
40 857 1070.55 871.86
41 396 319.434 369.877
42 260 411.351 257.906
43 1520 1579.48 1528.51
44 1033 738.646 1022.66
45 894 873.995 876.966
46 589 955.536 617.514
47 91 267.938 104.344
48 78 3.78477 58.3632
49 144 447.756 161.496
50 402 346.137 407.909
51 803 1241.18 807.688
52 1588 1582.66 1590.29
53 6 5.45389 32
54 664 571.344 677.822
55 1965 1484.95 1934.8
56 349 453.542 355.716
57 225 182.117 222.646
58 1461 1755.09 1478.51
59 868 946.422 839.416
60 2390 2416.86 2351.98
61 275 338.072 294.482
62 464 456.224 486.921
63 1183 2228.44 1254.79
64 20 93.9628 35.771
65 137 3.78477 141.637
66 1798 1817.35 1816.96
67 100 231.809 129.682
68 397 569 402.12
69 232 408.25 250.134
70 1355 1386.1 1355.86
71 1843 1491.49 1831.53
72 445 600.457 441.883
73 731 587.383 730.651
74 436 607.271 430.751

(continued on next page)

(continued )

No. Real production, ton Prediction of ANN, ton Prediction of XGB, ton

75 455 516.642 443.858
76 1521 1421.59 1539.18
77 1175 820.689 1072.94
78 232 543.801 286.53
79 153 13.6937 151.762
80 211 156 254
81 1257 1007 1229
82 928 865 918
83 825 720 785.178
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Appendix B

Real data and prediction of XGB/ANN model from testing pro-
cess in the case of production prediction.
No. Real production, ton Prediction of ANN, ton Prediction of XGB, ton

1 1786 1079.75 1511.6
2 688 915.475 739.036
3 446 234.412 313.871
4 816 696.202 492.459
5 2403 1739.3 2000.69
6 1497 1382.06 1565.9
7 2037 1675.9 2322.53
8 996 1252.54 1195.31
9 1045 948.279 762.268
10 340 483.319 565.643
11 630 856.035 668.591
12 164 182.789 175.969
13 1369 1534.89 1682.47
14 631 501.439 359.441
15 2228 2010.97 1992.25
16 115 421.96 428.314
17 495 376.964 404.13
18 430 631.916 559.978
19 309 161.169 201.158
20 312 298.446 275.513
21 911 297.94 400.452
22 1933 1483.01 1703.87
23 336 802.416 567.334
24 831 893.789 588.766
25 2256 1519.4 1804.72
26 2334 2320.35 1961.03
27 212 545.962 405.253
28 1876 1508.64 1761.49
29 61 52.1522 121.8566
30 1363 857.524 800.274
31 1211 1720.96 1642.75
32 95 250.913 452.584
33 1680 1849.23 1790.27
34 385 505.18 660.58
35 413 212.257 259.373
36 1283 1236.68 1365.72
37 1369 1094.31 1115.13
38 1700 1988.77 1263.2
39 1505 1279 1693
40 220 543.427 322.05
41 903 662.845 667.077
References

Abdulraheem, A., Sabakhi, E., Ahmed, M., Vantala, A., Raharja, I., Korvin, G., 2007.
Estimation of permeability from wireline logs in a Middle Eastern carbonate
reservoir using fuzzy logic. In: 15th SPE Middle East Oil and Gas Show and
Conference. https://doi.org/10.2118/105350-MS.

Andika, R., Chandima Ratnayake, R.M., 2019. Machine learning approach for risk-
based inspection screening assessment. Reliab. Eng. Syst. Saf. 185, 518e532.
https://doi.org/10.1016/j.ress.2019.02.008.

Anifowose, F.A., Labadin, J., Abdulraheem, A., 2015. Ensemble model of non-linear
feature selection-based Extreme Learning Machine for improved natural gas

https://doi.org/10.2118/105350-MS
https://doi.org/10.1016/j.ress.2019.02.008


W. Liu, Z. Chen, Y. Hu et al. Petroleum Science 20 (2023) 295e308
reservoir characterization. Spec. Issue J. Nat. Gas. Sci. Eng. 25, 1561e1572.
https://doi.org/10.1016/j.jngse.2015.02.012.

Anifowose, F.A., Labadin, J., Abdulraheem, A., 2017. Ensemble machine learning: an
untapped modeling paradigm for petroleum reservoir characterization. J. Petrol.
Sci. Eng. 151, 480e487. https://doi.org/10.1016/j.petrol.2017.01.024.

Awoleke, O., Lane, R., 2011. Analysis of data from the Barnett Shale using conven-
tional statistical and virtual intelligence techniques. SPE Reservoir Eval. Eng. 14
(5), 544e556. https://doi.org/10.2118/127919-PA.

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.G., 1984. Classification and
regression trees. In: Hoecker, A. (Ed.), TMVAeToolkit for Multivariate Data
Analysis. Wadsworth International Group, Belmont, California, USA arXiv pre-
print physics/0703039.

Breiman, L., 1996. Bagging predictors. Mach. Learn. 26 (2), 123e140. https://doi.org/
10.1007/BF00058655.

Brown, I., Mues, C., 2012. An experimental comparison of classification algorithms
for imbalanced credit scoring data sets. Expert Syst. Appl. 39, 3446e3453.
https://doi.org/10.1016/j.eswa.2011.09.033.

Chaki, S., Routray, A., Mohanty, W.K., 2018. Well-log and seismic data integration for
reservoir characterization: a signal processing and machine-learning perspec-
tive. IEEE Signal Process. Mag. 35 (2), 72e81. https://doi.org/10.1109/
MSP.2017.2776602.

Chen, T., Guestrin, C., 2016. Xgboost: a scalable tree boosting system. Proc. 22nd
ACM SIGKDD Int. Conf. Knowl. Discov. Data Min 785e794. https://doi.org/
10.1145/2939672.299785.

Chakra, N.C., Song, K.-Y., Gupta, M.M., Saraf, D.N., 2013. An innovative neural fore-
cast of cumulative oil production from a petroleum reservoir employing higher-
order neural networks (HONNs). J. Petrol. Sci. Eng. 106, 18e33. https://doi.org/
10.1016/j.petrol.2013.03.004.

Cox, D.R., 1958. The regression analysis of binary sequences (with discussion). J. Roy.
Stat. Soc. B 20, 215e242. https://doi.org/10.1111/j.2517-6161.1958.tb00292.x.

Cracknell, M., Reading, A., 2012. Machine Learning for Lithology Classification and
Uncertainty Mapping. AGU Fall Meeting Abstracts, p. 1511.

Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine.
Ann. Stat. 29 (5), 1189e1232. http://www.jstor.org/stable/2699986.

Guo, Z., Wang, H., Kong, X., Shen, L., Jia, Y., 2021. Machine learning-based production
prediction model and its application in Duvernay formation. Energies 14 (17),
5509. https://doi.org/10.3390/en14175509.

Harris, J.R., Grunsky, E.C., 2015. Predictive lithological mapping of Canada's North
using random forest classification applied to geophysical and geochemical data.
Comput. Geosci. 80, 9e25. https://doi.org/10.1016/j.cageo.2015.03.013.

Helmy, T., Rahman, S.M., Hossain, M.I., Abdelraheem, A., 2013. Non-linear hetero-
geneous ensemble model for permeability prediction of oil reservoirs. Arabian J.
Sci. Eng. 38, 1379e1395. https://doi.org/10.1007/s13369-013-0588-z.

Hossin, M., Sulaiman, M.N., 2015. A review on evaluation Metrics for data classifi-
cation evaluations. International Journal of Data Mining & Knowledge Man-
agement Process (IJDKP) 5 (2).

Ho, T.K., 1998. The random subspace method for constructing decision forests. IEEE
Trans. Pattern Anal. Mach. Intell. 20 (8), 832e844. https://doi.org/10.1109/
34.709601.
308
Kamenski, A., Cvetkovi�c, M., Kolenkovi�c Mo�cilac, I., et al., 2020. Lithology prediction
in the subsurface by artificial neural networks on well and 3D seismic data in
clastic sediments: a stochastic approach to a deterministic method. Int. J. Geom.
11, 8. https://doi.org/10.1007/s13137-020-0145-3.

Liu, W., Chen, Z., Hu, Y., 2022. XGBoost algorithm-based prediction of safety
assessment for pipelines. Int. J. Pres. Ves. Pip. 197, 104655. https://doi.org/
10.1016/j.ijpvp.2022.104655.

Merembayev, T., Yunussov, R., Yedilkhan, A., 2018. Machine learning algorithms for
classification geology data from well logging. 2018 14th International Confer-
ence on Electronics Computer and Computation (ICECCO), pp. 206e212. https://
doi.org/10.1109/ICECCO.2018.8634775.

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models,
part I, A discussion of principles. J. Hydrol. 10, 282e290. https://doi.org/10.1016/
0022-1694(70)90255-6.

Priezzhev, I., Stanisalav, E., 2018. Application of Machine Learning Algorithms Using
Seismic Data and Well Logs to Predict Reservoir Properties, vol. 1. European
Association of Geoscientists & Engineers, pp. 1e5. https://doi.org/10.3997/2214-
4609.201800920.

Radford, D.D.G., Cracknell, M.J., Roach, M.J., Cumming, G.V., 2018. Geological map-
ping in western Tasmania using radar and random forests. IEEE J. Sel. Top. Appl.
Earth Obs. Rem. Sens. 11 (9), 3075e3087, September. https://doi.org/10.1109/
JSTARS.2018.2855207.

Raeesi, M., Moradzadeh, A., Ardejani, F.D., Rahimi, M., 2012. Classification and
identification of hydrocarbon reservoir lithofacies and their heterogeneity using
seismic attributes, logs data and artificial neural networks. J. Petrol. Sci. Eng. 82,
151e165. https://doi.org/10.1016/j.petrol.2012.01.012.

Raschka, S., 2015. Python Machine Learning. Packt Publishing Ltd.
Ren, X., Hou, J., Song, S., Liu, Y., Chen, D., Wang, X., Dou, L., 2019. Lithology identi-

fication using well logs: a method by integrating artificial neural networks and
sedimentary patterns. J. Petrol. Sci. Eng. 182, 106336. https://doi.org/10.1016/
j.petrol.2019.106336.

Ren, Y., Mao, J., Zhao, H., Zhou, C., Gong, X., Rao, Z., Wang, Q., Zhang, Y., 2020.
Prediction of aerosol particle size distribution based on neural network. Adv.
Meteorol. https://doi.org/10.1155/2020/5074192.

Rodríguez, H.M., Escobar, E., Embid, S., Morillas, N.R., Hegazy, M., Larry, W.L., 2014.
New approach to identify analogous reservoirs. SPE Econ & Mgmt 6, 173e184.
https://doi.org/10.2118/166449-PA.

Siddiqi, S.S., Andrew, K.W., 2002. A study of water coning control in oil wells by
injected or natural flow barriers using scaled physical model and numerical
simulator. In: SPE Annual Technical Conference and Exhibition. https://doi.org/
10.2118/77415-MS.

Van, S.L., Chon, B.H., 2018. Effective prediction and management of a CO2 flooding
process for enhancing oil recovery using artificial neural networks. J. Energy
Resour. Technol. 140 (3), 032906. https://doi.org/10.1115/1.4038054.

You, J., Ampomah, W., Kutsienyo, E.J., Sun, Q., Balch, R.S., Aggrey, W.N., Cather, M.,
2019. Assessment of enhanced oil recovery and CO2 storage capacity using
machine learning and optimization framework. SPE Europec featured at 81st
EAGE Conference and Exhibition. https://doi.org/10.2118/195490-MS.

https://doi.org/10.1016/j.jngse.2015.02.012
https://doi.org/10.1016/j.petrol.2017.01.024
https://doi.org/10.2118/127919-PA
http://refhub.elsevier.com/S1995-8226(22)00217-5/sref6
http://refhub.elsevier.com/S1995-8226(22)00217-5/sref6
http://refhub.elsevier.com/S1995-8226(22)00217-5/sref6
http://refhub.elsevier.com/S1995-8226(22)00217-5/sref6
http://refhub.elsevier.com/S1995-8226(22)00217-5/sref6
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1016/j.eswa.2011.09.033
https://doi.org/10.1109/MSP.2017.2776602
https://doi.org/10.1109/MSP.2017.2776602
https://doi.org/10.1145/2939672.299785
https://doi.org/10.1145/2939672.299785
https://doi.org/10.1016/j.petrol.2013.03.004
https://doi.org/10.1016/j.petrol.2013.03.004
https://doi.org/10.1111/j.2517-6161.1958.tb00292.x
http://refhub.elsevier.com/S1995-8226(22)00217-5/sref13
http://refhub.elsevier.com/S1995-8226(22)00217-5/sref13
http://www.jstor.org/stable/2699986
https://doi.org/10.3390/en14175509
https://doi.org/10.1016/j.cageo.2015.03.013
https://doi.org/10.1007/s13369-013-0588-z
http://refhub.elsevier.com/S1995-8226(22)00217-5/sref18
http://refhub.elsevier.com/S1995-8226(22)00217-5/sref18
http://refhub.elsevier.com/S1995-8226(22)00217-5/sref18
http://refhub.elsevier.com/S1995-8226(22)00217-5/sref18
https://doi.org/10.1109/34.709601
https://doi.org/10.1109/34.709601
https://doi.org/10.1007/s13137-020-0145-3
https://doi.org/10.1016/j.ijpvp.2022.104655
https://doi.org/10.1016/j.ijpvp.2022.104655
https://doi.org/10.1109/ICECCO.2018.8634775
https://doi.org/10.1109/ICECCO.2018.8634775
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.3997/2214-4609.201800920
https://doi.org/10.3997/2214-4609.201800920
https://doi.org/10.1109/JSTARS.2018.2855207
https://doi.org/10.1109/JSTARS.2018.2855207
https://doi.org/10.1016/j.petrol.2012.01.012
http://refhub.elsevier.com/S1995-8226(22)00217-5/sref27
https://doi.org/10.1016/j.petrol.2019.106336
https://doi.org/10.1016/j.petrol.2019.106336
https://doi.org/10.1155/2020/5074192
https://doi.org/10.2118/166449-PA
https://doi.org/10.2118/77415-MS
https://doi.org/10.2118/77415-MS
https://doi.org/10.1115/1.4038054
https://doi.org/10.2118/195490-MS

	A systematic machine learning method for reservoir identification and production prediction
	1. Introduction
	2. Methodology
	2.1. The systematic ML method
	2.2. Pre-processing
	2.3. Approach
	2.3.1. Logistic regression
	2.3.2. k-nearest neighbors
	2.3.3. Decision tree
	2.3.4. Artificial neural network
	2.3.5. Random forest
	2.3.6. Gradient boosting decision trees
	2.3.7. XGBoost

	2.4. Evaluation metrics
	2.4.1. Classification problems
	2.4.2. Regression problems


	3. Case studies
	3.1. Reservoir identification
	3.2. Prediction of production

	4. Results and analysis
	4.1. Comparative analysis of classification models for reservoir identification
	4.1.1. Results of training and validation
	4.1.2. Results of testing

	4.2. Analysis of regression models for production forecasting
	4.2.1. ANN model
	4.2.2. XGB model
	4.2.3. Comparative analysis of ANN and XGB


	5. Conclusions
	Acknowledgments
	Appendix A
	Appendix B
	References


