Journal Pre-proof

Impacts of mantle-derived fluids on source-related biomarkers in crude oils: A case study from the Dongving Depression, eastern China

Ting Liang, Mei-Lin Jiao, Xin-Liang Ma, Liu-Ping Zhang

PII: \$1995-8226(24)00160-2

DOI: https://doi.org/10.1016/j.petsci.2024.06.002

Reference: PETSCI 843

To appear in: Petroleum Science

Received Date: 16 December 2023

Revised Date: 23 April 2024 Accepted Date: 4 June 2024

Please cite this article as: Liang, T., Jiao, M.-L., Ma, X.-L., Zhang, L.-P., Impacts of mantle-derived fluids on source-related biomarkers in crude oils: A case study from the Dongying Depression, eastern China, *Petroleum Science*, https://doi.org/10.1016/j.petsci.2024.06.002.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.

1	Original Paper
2	Impacts of mantle-derived fluids on source-related biomarkers in crude oils: A case
3	study from the Dongying Depression, eastern China
4	Ting Liang ^{a, b} *, Mei-Lin Jiao ^{a,b} , Xin-Liang Ma ^{a,b} , Liu-Ping Zhang ^c
5 6 7 8 9	 a. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing, 102249, China b. College of Geosciences, China University of Petroleum, Beijing, 102249, China c. Key Laboratory of Petroleum Resource, Institute of Geology and Geophysics, Chinese Academy of Science, Beijing, 100029, China
10	*Corresponding author: Ting Liang, E-mail address: tliang@cup.edu.cn (T. Liang)
11 12	Edited by Jie Hao and Meng-Jiao Zhou

ABSTRACT

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Mantle-derived fluids can change the biomarker compositions in oil, with respect to abnormal thermal energy and volatiles input. Identification the reliable biomarkers for oilsource correlation is important in the regions that have been affected by mantle-derived fluids. In the Dongying Depression, deep faults, including Gaoging-Pingnan Fault in the western part and the Shicun Fault in the southern part, have provided the avenues by which large volumes of mantle-derived fluids have entered this petroliferous depression. For the purpose of comparison, oil and accompanied gas were collected from the active zones with mantle-derived fluids activities, and the stable zones with little mantle-derived fluids. According to isotopic analyses (i.e., helium isotope, $\delta^{13}C_{CO2}$ and $\delta^{2}H_{CH4}$), mantle-derived fluids in the north part of the Dongying Depression have more H₂ and less CO₂ than those in the south part. The correlations between source-related biomarkers in crude oils and isotopic compositions in the corresponding gases suggest that many biomarker parameters have lost their original signatures due to the abnormal thermal energy, and H₂ and/or CO₂ derived from the mantle-derived fluids. Pr/Ph, for example, can be modified by both thermal energy and H₂ from the mantle-derived fluids. Systematic increase or decrease in the gammacerane index, C₂₄ tetracyclic/C₂₆ tricylic terpane and C₂₁/C₂₃ tricylic terpane may be indicative of the occurrence of abnormal thermal energy. C₃₁/C₃₀ hopane, DBT/TF and DBF/TF, in contrast, may indicate the contribution of hydrogenation as opposed to that of CO₂ supply. The relative distributions of C₂₇, C₂₈ and C₂₉ $\alpha\alpha\alpha$ (20R) steranes are probably altered little by the mantle-derived fluids. Based on the ternary diagram of C₂₇, C₂₈ and C₂₉ steranes, the oil samples collected from the Dongying Depression were largely

35	the mixtures derived from source rocks in lower layer of the Es ₃ member and upper layer
36	of the Es ₄ member.
37	
38	Keywords: Biomarker; Mantle-derived fluids; Oil-source correlation; Hydrogenation;
39	Dongying Depression

1. Introduction

41

42	Mantle-derived fluids that ascend via deep faults into sedimentary basins (e.g., King,
43	1986) have been widely documented (e.g., Jin et al., 2004; Hu et al., 2009; Zhang et al.,
44	2009, 2011; Caracausi et al., 2013; Bigi et al., 2014; Palcsu et al., 2014; Liu et al., 2017,
45	2021; Wang et al., 2022). Mantle-derived fluids can carry effective heat and release
46	gases, which are typically composed of CH ₄ , CO ₂ , N ₂ , and H ₂ , into the reservoirs
47	(Caracausi et al., 2008, 2013; Nuccio et al., 2014; Liu et al., 2017, 2021; Wang et al.,
48	2022; Guan et al., 2023). These fluids, thus, can cause systematic changes in biomarker
49	compositions with respect to the abnormal thermal energy and volatiles input. The
50	thermal energy, for example, may cause thermal cracking of C-C bonds in high molecular
51	weight components, and consequently affects the distribution patters of the biomarkers
52	(Clifton et al., 1990; Zhao et al., 2005; Wang et al., 2006; Jin et al., 2007; Huang et al.,
53	2016). Hydrogen gas, in contrast, could affect the distribution patters of <i>n</i> -alkanes and
54	isoprenoids by hydrogenation (Jin et al., 2002, 2004, 2007), whereas mantle-derived CO ₂
55	fluids can preferentially extract the lighter saturated hydrocarbons from oils (Liu et al.,
56	2017). Therefore, the influence of mantle-derived fluids on biomarkers needs to be
57	properly accounted for before oil-source correlations, which are largely based on
58	biomarker fingerprints. However, previous studies mostly focused on <i>n</i> -alkanes and
59	isoprenoids. Little is known about the responses of many source-related biomarkers,
60	including steranes, terpanes, and aromatics to mantle-derived fluids. Furthermore, many
61	of the previous studies on the effects of mantle-derived fluids are based on experimental
62	simulation of source rocks. It is uncertain that if mantle-derived fluids can alter

63	biomarkers in crude oils similarly. As such, the effects of mantle-derived fluids on
64	source-related biomarkers in crude oils have to be addressed.
65	The Dongying Depression is one of the most petroliferous-rich areas in the Bohai
66	Bay Basin in eastern China (Fig. 1). There, mantle-derived fluids are found in the areas
67	close to deep faults and/or with abundant igneous rocks (Jin et al., 2004). In contrast,
68	other areas are relatively stable, with little if any, activity of mantle-derived fluids (Fig.
69	1). As such, the comparison between active and stable zones in the Dongying Depression
70	allows an assessment of the role played by abnormal heat and gases released from
71	mantle-derived fluids on the biomarkers in the crude oils. This study, therefore, will (1)
72	evaluate the effect of thermal energy as opposed to that of H ₂ and CO ₂ on source-related
73	biomarkers, and (2) suggest reliable source-related biomarkers, that appear to be immune
74	to thermal energy, H ₂ and/or CO ₂ input.
75	
76	Fig. 1. Location map of the Dongying Depression. (a) Structural map of the Bohai Bay
77	Basin and location of the Dongying Depression (modified from Li et al., 2024); (b)
78	structural map of the Dongying Depression showing distribution of faults, CO2 pools,
79	igneous rocks and oilfields (modified from Zhang et al., 2009, and based on maps
80	from Jin et al., 2002).
81	
82	2. Geological setting
83	2.1. Regional geology
84	The Bohai Bay Basin, which is a lacustrine basin located in eastern China, is
85	bordered by the Tan-Lu Fault to the east, the Yanshan Orogen to the north, the Taihang

86	Mountain to the west, and the Luxi Uplift to the south (Fig. 1(a)). The basin has
87	undergone intense fault-block rifting and active magma movements since the late
88	Mesozoic (Allen et al., 1997; Zhang, 1997). The Dongying Depression, with an area of
89	5700 km ² , is a half-graben developed in the south part of the Bohai Bay Basin. In this
90	depression, the Gaoqing-Pingnan Fault in the western part and the Shicun Fault in the
91	southern part are major deep faults (Jin et al., 2002; Fig. 1(b)). Tertiary volcanic rocks
92	and CO ₂ pools are located along these faults (Jin et al., 2002; Zhang et al., 2009; Fig.
93	1(b)), which provided pathways for mantle-derived fluids migrating into the depression
94	(Liu et al., 1995).
95	The Paleogene strata in the Dongying Depression include the Kongdian Formation
96	(Ek), the Shahejie Formation (Es) and the Dongying Formation (Ed). The Kongdian
97	Formation, with a thickness of 0-2000 m, is a red bed succession consisting of coarse
98	clastic rocks that unconformably overlies the Mesozoic basement. This formation is
99	overlain by the Shahejie Formation and the Dongying Formation, which are the main oil
100	and gas-bearing formations in the basin (Hu et al., 1989; Group of Shengli Oil Field
101	Compiling Petroleum Geology, 1993). The Shahejie Formation is divided into four
102	members, that are labelled, from oldest to youngest, as Es ₄ (up to 1500 m thick), Es ₃
103	(220–380 m thick), Es $_2$ (160–230 m thick) and Es $_1$ (120–195 m thick). Es $_4$ was deposited
104	during the initial rifting stage, whereas Es3 was deposited as syn-rift sediments (Hu et al.,
105	1989; Group of Shengli Oil Field Compiling Petroleum Geology, 1993). Es ₄ and Es ₃
106	members are further divided into the upper (i.e., Es ₄ ¹ and Es ₃ ¹) and the lower layers (i.e.,
107	Es ₄ ² and Es ₃ ²). Es ₄ ¹ and Es ₃ ² , which typically consist of mudstones, shales and oil shales,
108	and are the main source rocks in the Dongying Depression (Zhu et al., 2004a, 2004b). In

Es₄¹, the total thickness of source rock is about 340 m, whereas in Es₃² it is up to 840 m thick (Pang et al., 2003). The sediments that now form the members Es₂ and Es₁ were deposited during a contraction of the lake. As such, the member Es₂ consists of intercalated purple and grey-green mudstones, sandstones, conglomerate, whereas member Es₁ is formed of gypsum-halite and/or sandstones. The Dongying Formation, 410 to 510 m thick, typically consists of fluvial and lacustrine grey mudstones and sandstones. The upper surface of the Dongying Formation is defined by an unconformity, which is overlain by the Neogene Guantao Formation (Ng, 250–300 m thick) and the Minghuazhen Formation (Nm, 700–760 m thick) (Hu et al., 1989; Group of Shengli Oil Field Compiling Petroleum Geology, 1993; Fig. 2).

Fig. 2. Generalized Cenozoic stratigraphy of the Dongying Depression showing lithology and paleoenvironment of each unit (modified from Group of Shengli Oil Field Compiling Petroleum Geology, 1993).

2.2. Source rock geochemistry

Source rocks from Es₄¹ commonly has total organic carbon (TOC) greater than 1.1 wt%, with a maximum of 4.8 wt% (Hao, 2007). The kerogen types are I and II₁, with $%R_o = 0.42-0.64$ (Tan et al., 2002; Jiang et al., 2003; Yang and Zhang, 2008). This source rock, deposited in a shallow to semi-deep lacustrine and hypersaline environment (Zhu et al., 2004b; Hao, 2007). The TOC of the source rock from Es₃², in contrast, is typically between 2.0 and 5.0 wt% (Hao, 2007). It is dominated by type II₁ kerogen, with $%R_o = 0.32-0.64$ (Tan et al., 2002; Jiang et al., 2003; Yang and Zhang, 2008). The

source rock from Es₃² formed in a deep lacustrine and semi-saline to fresh water environment (Zhu et al., 2004b).

3. Samples and methods

3.1. Samples

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

Oil and gas samples were collected in pairs from 18 production wells in the Dongying Depression (Fig. 1(b) and Table 1). For the purpose of comparison, thirteen wells were located in the zones with documented mantle-derived fluid activities (i.e., Gaoqing-Pingnan and Shicun Fault Belts) with burial depths of 863–3062 m, and the other five were from the stable zones with little, if any, mantle-derived fluids (i.e., Niuzhuang Trough) with a burial depth of 2600–3328 m (Fig.1 and Table 1). Gas samples were collected directly from the wellheads or separators after flushing the lines for 2–3 min to remove air contamination. The collection of each gas sample used a stainless-steel cylinder (10 cm in diameter and 5,000 cm³ in volume), which is equipped with shut-off valves on both sides. A maximum pressure of 22.5 MPa was used to collect the gas samples. The pressure inside the container was kept higher than the atmospheric pressure. After collection, the bottles were immersed in a water bath to test for any leakage. The corresponding oil samples were collected from wellheads or separators in glass jars. Density, API and sulfur content of oil samples were provided by the Shengli Oilfield Company (Table 2).

3.2. Helium, hydrogen and carbon isotopes in gas

Isotopic compositions of the gas samples, including ${}^{3}\text{He}/{}^{4}\text{He}$, $\delta^{13}\text{C}_{\text{CO2}}$ and $\delta^{2}\text{H}_{\text{CH4}}$, were obtained in this study (Table 1). Helium isotope ratios were determined by a

154	MM5400 mass spectrometer at Lanzhou Center for Oil and Gas Resources, Chinese
155	Academy of Sciences, with an analytical error of $\pm 0.25\%$. The $^{3}\text{He}/^{4}\text{He}$ (i.e., R) of the
156	gas samples were standardized against purified atmospheric helium (i.e., $Ra = 1.4 \times 10^{-6}$).
157	Measurement of the carbon isotopic composition of CO ₂ (i.e., $\delta^{13}C_{CO2}$) and CH ₄
158	(i.e., $\delta^{13}C_{CH4}$), and hydrogen isotopic composition of CH ₄ (i.e., $\delta^{2}H_{CH4}$) were performed
159	on a DELTAplus XP mass spectrometer at Lanzhou Center for Oil and Gas Resources of
160	Chinese Academy of Sciences. The $\delta^{13}C_{CO2}$ and $\delta^{13}C_{CH4}$ values are reported relative to
161	the Pee Dee Belemnite (PDB) standard in per mil (‰), whereas the $\delta^2 H_{CH4}$ (i.e., δD_{CH4})
162	values are reported relative to Vienna Standard Mean Ocean Water (VSMOW) in per mil
163	(‰). The errors associated with these results are $\pm 0.3\%$ for $\delta^{13}C$ and $\pm 0.05\%$ for $\delta^{2}H$.
164	3.3. Gas-Chromatography (GC) and GC-mass spectrometry (GC-MS) in oil
165	Eighteen crude oil samples were analyzed by GC for the normal alkane and acyclic
166	isoprenoids, and by GC-MS for terpanes, steranes, hopanes and polycyclic aromatic
167	hydrocarbons (PAHs). GC analyses were performed using an Agilent 6890
168	chromatography (fused silica column, 60 m \times 0.25 mm \times 0.25 $\mu m)$ equipped with a flame
169	ionization detector (FID). The oven temperature was initially held at 100 °C for 1 min,
170	programmed to 300 °C at 3 °C/min and held at 300 °C for 20 min. The GC-MS of the
171	saturated and aromatic hydrocarbon fractions were carried out on an Agilent 6890 gas
172	chromatograph coupled to an Agilent 5975 mass selective detector (MSD). A HP-5MS
173	fused silica column (60 m \times 0.25 mm \times 0.25 $\mu m)$ was used. The carrier gas was helium,
174	with a constant flow rate of 1 mL/min. For analyzing saturated hydrocarbon fraction, the
175	GC oven temperature was programmed from 100 to 325 °C at 3 °C/min, with the initial
176	and final hold times of 2 and 20 min, respectively. For the aromatic hydrocarbon

fraction, the GC oven was programmed from 80 °C (1 min) to 320 °C at 3 °C/min, and 177 held at 320 °C for 10 min. The mass spectrometer was operated in selected ion 178 monitoring (SIM) mode. Internal standards, d4 C₂₉ 20R and d8 dibenzothiophene, were 179 added to the oil samples for quantification of saturated and aromatic hydrocarbon 180 fraction. Concentrations and biomarker parameters were calculated from peak area. 181 182

3.4. Degrees of correlation

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

In this study, correlations were made between source-related biomarker parameters in oil samples and isotopes in their accompanied gas samples. Pearson correlation coefficients were used to quantitatively evaluate the strength of each linear relationship, whereas p-values were used to estimate the probability of no correlation. Typically, a pvalue less than 0.05 was regarded as statistically significant (Fisher, 1992; Xu et al., 2023). As such, a Pearson correlation coefficient within [-1, -0.6] or [0.6, 1], together with a p-value <0.05, reflects a correlation between X and Y. Otherwise, the X and Y are considered to be independent with each other.

4. Results

4.1. Helium, hydrogen and carbon isotopes in gas

In the Dongying Depression, the R/Ra ratios in the active zones range from 0.4–3.6, with most greater than 1.0. In contrast, in the stable zones, the R/Ra ratio is 0.1–0.4 (Table 1). The $\delta^2 H_{CH4}$ values in the active zones have a large variation between -274.0% and -53.1%, whereas those in the stable zones range are from -145.4% to -108.5% (Table 1). The $\delta^2 H_{CH4}$ values, which are greater than -100%, are obtained in the gases from the Gaoqing-Pingnan (e.g., Samples B4-6-41 and B338-13) and Shicun

Deep Fault Belts (e.g., Sample Cn93-4), with the largest value up to -53.1\% (Table 1). 199 The $\delta^{13}C_{CH4}$ values range between -58.9% and -43.9% in the active zones, whereas 200 those in the stable zones vary between -55.8% and -52.5% (Fig. 3(a)). The $\delta^{13}C_{CO2}$ 201 values in the active zones (-15.7\%-6.4\%) are generally more positive than those in the 202 stable zones (-14.3\% - -7.5\%). A negative covariance exists between $\delta^2 H_{CH4}$ and 203 $\delta^{13}C_{CO2}$ (Fig. 3(b)), whereas there is no obvious correlation between R/Ra and δ^2H_{CH4} or 204 $\delta^{13}C_{CO2}$ (Fig. 3(c) and (d)). 205 206 Fig. 3. Correlation diagrams (a) between δD_{CH4} and $\delta^{13}C_{CH4}$, (b) between δD_{CH4} and 207 $\delta^{13}C_{CO2}$, (c) between δD_{CH4} and R/Ra, and (d) between $\delta^{13}C_{CO2}$ and R/Ra in gas from 208 the Dongying Depression. The isotopic compositions for different types of methane in 209 (a) are modified from Whiticar (1989). "r" is short for Pearson correlation coefficient. 210 211 4.2. Biomarkers in crude oil 212 4.2.1. N-alkanes and isoprenoids 213 In the stable zones, $\Sigma nC_{21}/\Sigma nC_{22+}$ varies from 1.0 to 1.4, whereas this ratio in the 214 active zones ranges from 0.4 to 3.0 (Figs. 4, 5(a)–(c)). Although the ΣnC_{21} - $/\Sigma nC_{22+}$ 215 values are poorly correlated with R/Ra and δ^2 H_{CH4}, they are negatively correlated with 216 $\delta^{13}C_{CO2}$ (Fig. 5(a)–(c)). 217 218 Fig. 4. Gas chromatograms of representative crude oils from the Dongying Depression. 219 The peak labels denote the carbon number of n-alkanes; green circle denotes Pr; red 220 circle denotes Ph; red triangle denotes n- C_{18} ; black triangle denotes n- C_{17} . 221

Fig. 5. Correlation diagrams of ΣnC_{21} - (ΣnC_{22}) + versus (a) R/Ra. (b) D_{CH4} and (c) $\delta^{13}C_{CO2}$. 222 Pr/Ph versus (d) R/Ra, (e) D_{CH4} and (f) $\delta^{13}C_{CO2}$, and gammacerane index versus (g) 223 R/Ra. (h) D_{CH4} and (i) $\delta^{13}C_{CO2}$. 224 225 The Pr/Ph ratio in the stable zones is relatively low (0.47–0.84), whereas that in the 226 active zones varies from 0.37–1.41 (Fig. 5(d)–(f) and Table 3). In general, the Pr/Ph 227 values are poorly correlated with R/Ra, $\delta^2 H_{CH4}$, and $\delta^{13} C_{CO2}$ values (Fig. 5(d)–(f)). 228 4.2.2. Steranes and terpanes 229 Sterane (m/z 217) mass chromatograms of representative oil samples are shown in 230 Fig. 6. In the study area, the relative abundances of C_{27} , C_{28} and C_{29} $\alpha\alpha\alpha$ (20R) steranes 231 232 (i.e., $C_{27}/\Sigma C_{27-29}$, $C_{28}/\Sigma C_{27-29}$, $C_{29}/\Sigma C_{27-29}$) fall within the ranges of 0.24–0.62, 0.21–0.31, and 0.26–0.53, respectively, with little differences between the stable and active zones 233 (Fig. 7). All of these parameters are poorly correlated with R/Ra, $\delta^2 H_{CH4}$ and $\delta^{13} C_{CO2}$ 234 (Supplementary Fig. S1). 235 236 Fig. 6. Partial m/z 217 mass chromatograms of representative crude oils from the 237 Dongying Depression. Peak assignments define stereochemistry at C-20 (S and R); 238 239 $\alpha\alpha\alpha$ and $\alpha\beta\beta$ denote $5\alpha(H)$, $14\alpha(H)$, $17\alpha(H)$ -steranes and $5\alpha(H)$, $14\beta(H)$, $17\beta(H)$ steranes, respectively; $D = 13\beta(H)$, $17\alpha(H)$ -diasteranes. 240 Fig. 7. Ternary diagram showing the relative distributions of C_{27} , C_{28} and C_{29} $\alpha\alpha\alpha$ (20R) 241 steranes. Ranges of source rocks from Es₃² (green square) and Es₄¹ (red square) are 242 modified from Tan et al. (2002). Ranges of terrestrial (yellow dashed lines), lacustrine 243

(red dashed lines) and oceanic (blue dashed lines) environments are based on Peters 244 and Moldowan (1993). 245 246 Representative mass chromatograms of m/z 191 are shown in Fig. 8. In the study 247 area, the gammacerane index is commonly low. In the oil samples from the stable zones, 248 249 for example, the gammacerane index varies from 0.07–0.48, whereas in the active zones the range is from 0.10–0.58 (Fig. 5(g)–(i) and Table 3). In addition, a negative 250 covariance exists between the gammacerane index and R/Ra (Fig. 5(g)) in the samples 251 from active zones, whereas $\delta^2 H_{CH4}$ (Fig. 5(h)) and $\delta^{13} C_{CO2}$ (Fig. 5(i)) are not correlated 252 with the gammacerane index. 253 254 Fig. 8. Partial m/z 191 mass chromatograms of representative crude oils from the 255 Dongying Depression. Peak assignments define stereochemistry at C-22 (S and R); 256 $\alpha\beta$ and $\beta\alpha$ denote $17\alpha(H)$ -hopanes and $17\beta(H)$ -moretanes, respectively; Ts = 257 $C_{27}18\alpha(H)$, 22, 29, 30-trisnorneohopane; $Tm = C_{27}17\alpha(H)$, 22, 29, 30-trisnorhopane; 258 25-nor = C_{29} 25-norhopane; G: gammacerane. 259 260 The C_{31}/C_{30} hopane, defined as the ratio of C_{31} 22R homohopane/ C_{30} hopane, is 261 262 slightly larger in the active zones than that in the stable zones. In the stable zones, for 263 example, C_{31}/C_{30} hopane varies from 0.37–0.46, whereas that in the active zones range from 0.37–0.63. Additionally, the ratio of the C_{31}/C_{30} hopane is negatively correlated 264 with $\delta^2 H_{CH4}$ (Fig. 9(b)), but positively correlated with $\delta^{13} C_{CO2}$ (Fig. 9(c)). In contrast, 265 266 there is no covariance between C_{31}/C_{30} hopane and R/Ra (Fig. 9(a)).

267

Fig. 9. Correlation diagrams of C_{31}/C_{30} hopane versus (a) R/Ra, (b) D_{CH4} and (c) $\delta^{13}C_{CO2}$, 268 C_{24} tetracyclic/ C_{26} tricylic terpane versus (d) R/Ra, (e) D_{CH4} and (f) $\delta^{13}C_{CO2}$, and 269 C_{21}/C_{23} tricylic terpane versus (g) R/Ra, (h) D_{CH4} and (i) $\delta^{13}C_{CO2}$. 270 271 In the stable zones, C_{24} tetracyclic/ C_{26} tricylic terpane and C_{21}/C_{23} tricylic terpane are 272 0.33–0.40 and 0.64–0.79, respectively. Compared to those in the stable zones, C₂₄ 273 tetracyclic/ C_{26} tricylic terpane and C_{21}/C_{23} tricylic terpane in the active zones, have larger 274 275 ranges with the former varying from 0.28–0.57 and the latter from 0.62–1.08. A negative covariance exists between C₂₄ tetracyclic/C₂₆ tricylic terpane and R/Ra in the samples 276 from active zones (Fig. 9(d)). The $\delta^2 H_{CH4}$ (Fig. 9(e)) and $\delta^{13} C_{CO2}$ values (Fig. 9(f)), in 277 contrast, are generally not correlated with C₂₄ tetracyclic/C₂₆ tricylic terpane. For C₂₁/C₂₃ 278 tricylic terpane, although this ratio in the active zones is slightly higher than that in the 279 stable zones, it is lack of any positive covariance between C₂₁/C₂₃ tricylic terpane and 280 281 R/Ra in the active zones (Fig. 9(g)). Furthermore, C_{21}/C_{23} tricylic terpane changes little with increasing $\delta^2 H_{CH4}$ and $\delta^{13} C_{CO2}$ values (Fig. 9(h) and (i)). 282 283 4.2.3. Three fluorene series compounds (TF) TF include dibenzothiophene (DBT), dibenzofuran (DBF) and fluorine (F). In the 284 study area, the relative abundance of DBT is much higher than that of DBF. The 285 DBT/TF ratios range from 0.14–1.00 in the active zones and from 0.78–0.90 in the stable 286 zones (Table 3). DBF, in contrast, is partly below the detective limit. There are only 287 seven oil samples from the active zones that show trace amount of DBF, with the 288 DBF/TF ratio varying from 0.08 to 0.33 (Table 3). Additionally, the DBT/TF values are 289

positively correlated with $\delta^2 H_{CH4}$ and negatively correlated with $\delta^{13}C_{CO2}$, but lack any correlation with R/Ra (Supplementary Fig. S2(a)–(c)). In contrast, the covariance between DBF/TF and R/Ra (or $\delta^2 H_{CH4}$, or $\delta^{13}C_{CO2}$) is not evident (Supplementary Fig. S2(d)–(f)).

5. Discussion

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

5.1. Occurrence of mantle-derived fluids

Deep faults provide migration pathways for mantle-derived fluids (Liu et al., 1995). In the study area, the Gaoqing-Pingnan and Shicun Fault Belts are such structures. Movement of the Gaoqing-Pingnan Belt probably took place between the Middle Jurassic and Pliocene (Shen et al., 2007), whereas that of the Shicun Fault Belt is poorly understood. The migration of mantle-derived fluids along the Gaoqing-Pingnan and Shicun Fault Belts is evident from the (1) Tertiary igneous rocks found along these zones (Liu et al., 1995); (2) high values of helium isotopes in the natural gas reservoirs (Liu et al., 1995); (3) mantle-derived CO₂ pools found in these fault belts (Zhang et al., 2011); and (4) the accumulation of hydrothermal alkanes in these two belts (Jin et al., 2002). Given that the ³He/⁴He ratio in the mantle is approximately three orders of magnitude higher than those produced in the crust (R/Ra in crust is 0.01 to 0.1), the R/Ra ratio has commonly been used to evaluate the gas contributions from the mantle (Xu, 1996; Dai et al., 2009; Zhang et al., 2009). The variation of R/Ra in the Dongying Depression, therefore, indicates that (1) the flux intensities of mantle-derived fluids in the active zones are locally heterogeneous, and (2) the contributions of mantle-derived fluids in the stable areas are much less than those in the active zones. Given (1) the mantlederived fluids are the heat carriers, and (2) the helium isotopes may quantitatively reflect

the contribution from mantle, the R/Ra can be used as an indicator of the contribution of 313 thermal energy from mantle-derived fluids. 314 Typically, $\delta^2 H_{CH4}$ value in the wet gas varies from -260% to -150%, whereas that 315 in the dry gas ranges from -180% to -130% (Schoell, 1980). Compared with that 316 organic methane, thermogenic methane commonly has more positive δ^2 H values (Fig. 317 3(a); Whiticar, 1989). $\delta^2 H_{CH4}$ values of geothermal gases in New Zealand, for example, 318 range from -197‰ to -142‰ (Lyon and Hulston, 1984) and -135‰ to -122‰ (Botz et 319 al., 2002). Moreover, hydrogen gas derived from mantle favors the hydrogenation of 320 organic matter, which produces methane high in δ^2 H (Jin et al., 2002, 2007). This study 321 illustrates that $\delta^2 H_{CH4}$ and $\delta^{13} C_{CH4}$ are mostly compatible with the range of thermogenic 322 methane (Fig. 3(a)). For $\delta^{13}C_{CO2}$, previous studies demonstrated that the $\delta^{13}C_{CO2}$ values 323 increased with an increase in the content of mantle-derived CO₂ (Jin et al., 2002, 2007; 324 Zhang et al., 2011). Therefore, the amount of H₂ and CO₂ derived from mantle-derived 325 fluids are positively proportional to the $\delta^2 H_{CH4}$ and $\delta^{13} C_{CO2}$ values in the gas, respectively 326 (Jin et al., 2002, 2007; Zhang et al., 2009, 2011). 327 In the Dongying Depression, the $\delta^2 H_{CH4}$ values are negatively correlated with 328 $\delta^{13}C_{CO2}$ (Fig. 3(b)), indicating the amount of H₂ in the mantle-derived fluids may 329 decrease as the amount of CO₂ increases. In general, the mantle-derived fluids in the 330 331 north part of the Dongying Depression are relatively H₂-rich, whereas those in the south 332 part are relatively CO₂-rich. This is consistent with the suggestion of Jin et al. (2004). In contrast, the lack of correlation between the R/Ra and $\delta^2 H_{CH4}$ (or $\delta^{13} C_{CO2}$) (Fig. 3(c) and 333

(d)), indicates that the thermal energy is not proportional to the gases released from the

334

335

mantle-derived fluids.

5.2. *Influence of biodegradation*

336

The influences of biodegradation and mantle-derived fluids on the distribution of 337 source-related biomarkers cannot be differentiated unambiguously. In the Dongying 338 Depression, biodegradation has been widely documented in the Le'an oil field (e.g., 339 Zhang et al., 2009; Niu et al., 2022). Indeed, this study shows that the oil from the Le'an 340 341 oil field, including Cg100-p1, Cn93-4 and C62, appear to have suffered moderate to severe biodegradation, because (1) oils in Cg100-p1, Cn93-4 and C62 are heavy oils, 342 characterized by low API gravity (<13°) and high sulfur content (>1.6 ppm) (Zhang et 343 344 al., 2009), (2) an unresolved complex mixture (UCM) occurs, with partial removals of nalkanes (Fig. 4(g) and (h)), and (3) the appearance of C₂₉ 25-norhopane (Fig. 8). 345 Moreover, the absence of n-alkanes and the abundance of C_{29} 25-norhopane in G42-hx1 346 and G42-41 indicates a more advanced biodegradation than Cg100-p1, Cn93-4 and C62 347 (Figs. 4 and 8). Other oil samples, in contrast, show medium-high API gravity (25–38°), 348 low sulphur contents (0.08–1.01 ppm), complete *n*-alkanes and absence of C₂₉ 25-349 norhopane, that indicate minimal levels of biodegradation. Although oils collected from 350 Cg100-p1, Cn93-4, C62, G42-hx1 and G42-41 may have suffered biodegraded, the 351 352 systematic changes of biomarker parameters in the oil samples with R/Ra, δD_{CH4} or $\delta^{13}C_{CO2}$ indicate the variations are largely caused by mantle-derived fluids, instead of 353 354 biodegradation. 355 5.3. Variations of biomarkers with increasing intensity of mantle-derived fluids Potentially, the mantle-derived fluids could affect biomarkers during or after 356 357 hydrocarbon generation. Processes that occurred during hydrocarbon generation involved catalysis and hydrogenation in kerogen degradation (Jin et al., 2001, 2004), and 358

increasing thermal maturity of source rocks (Peters and Moldowan, 1993; Requejo, 1994; 359 Huang et al., 2016). In contrast, the mantle-derived fluids could alter biomarker 360 distributions in petroleum by (1) hydrogenolysis of the petroleum (e.g., Mango, 1992; 361 Sun and Jin, 2000) and (2) thermal cracking (Zhao et al., 2005; Wang et al., 2006). In the 362 Dongying Depression, Zhang et al. (2009) suggested that the mantle-derived fluids affect 363 364 the chemical compositions in oil after hydrocarbon generation, based on (1) little similarity of the rare earth elements (REEs) between the oils and source rocks and (2) the 365 correlation between REEs in the oil samples and R/Ra in their co-produced natural gas. 366 367 This suggestion can be further evidenced by the fact that oil samples from the active zones are commonly accompanied by gases that have high R/Ra values indicative of 368 mantle-derived helium that probably migrated and mixed with the oil/gas after it had 369 been generated. Therefore, the mantle-derived fluids in the Dongying Depression 370 probably occurred after oil generation and could affect the biomarkers in petroleum. 371 372 5.3.1. Variations of n-alkanes and isoprenoids The abundance of n-C₈ to n-C₂₁ n-alkanes relative to the n-C₂₂ to n-C₄₅ n-alkanes 373 374 (i.e., $\Sigma nC_{21}/\Sigma nC_{22+}$) reflects the source of the organic matter (Peters et al., 2005). The $\Sigma nC_{21}/\Sigma nC_{22+}$ values, in the study area, are not correlated with R/Ra and $\delta^2 H_{CH4}$, but are 375 negatively correlated with $\delta^{13}C_{CO2}$ (Fig. 5). The lack of correlation between ΣnC_{21} 376 ΣnC_{22+} and $\delta^2 H_{CH4}$ is consistent with the simulation experiment of Jin et al. (2007), 377 which suggested that hydrogenation rarely affected the $\sum nC_{21}/\sum nC_{22+}$ values. Their 378 experiments also suggested that the thermal energy may lead to an increase in the ΣnC_{21} 379 ΣnC_{22+} ratio because the heat would cause cracking of the *n*-alkanes, especially the *n*-380 alkanes with heavy molecular weights (Jin et al., 2007). This suggestion, however, is 381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

balance out.

inconsistent with the poor correlation between R/Ra and ΣnC_{21} - $(\Sigma nC_{22}$ + found in this study. Such a contradiction is probably related to the simulation experiments of Jin et al. (2007) that did not consider the effect of CO_2 on the *n*-alkanes. Indeed, studies on crude oils accompanying mantle-derived CO₂ in many other basins and experiments of CO₂ extraction evidenced that CO₂ preferred to extract light *n*-alkanes with carbon numbers smaller than 20 (e.g., Li et al., 2006; Liu et al., 2017). In this study, the negative covariance between $\Sigma nC_{21}/\Sigma nC_{22+}$ and $\delta^{13}C_{CO2}$ indicates that the mantle-derived CO₂ results in a decrease in the $\Sigma nC_{21}/\Sigma nC_{22+}$ values, and thus, weakens the effect of thermal energy. The Pr/Ph ratio is believed to be indicative of redox conditions where the source rock was deposited (Powell and McKirdy, 1973). High Pr/Ph values (>3) typically indicate terrigenous organic matter deposited under oxic conditions (Powell and McKirdy, 1973). A ratio between 1 and 3 suggests oxic-suboxic conditions (Peters et al., 2005), whereas low Pr/Ph values (<1) suggest anoxic conditions (Didyk et al., 1978; Peters et al., 2005; Cheng et al., 2013). Such suggestions, however, are not applicable due to the influences of mantle-derived fluids. Simulation experiments, for example, evidenced that Pr/Ph increased as temperature increased (Jin et al., 2007) or the intensity of hydrogenation dropped (Jin et al., 2004). In this study, the Pr/Ph values are poorly correlated with R/Ra, δ^2 H_{CH4}, and δ^{13} C_{CO2} (Fig. 5(d)–(f)). The lack of any evidence for an increase in the Pr/Ph ratio may suggest that the thermal and hydrogenation effects may

5.3.2. Variations of steranes and terpanes

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

The C₂₇ sterane is probably derived from marine organic matter, whereas C₂₈ and C₂₉ steranes reflect the contributions from lacustrine algae and terrestrial plants, respectively (Huang and Meinshein, 1979; Peters et al., 2005; Samuel et al., 2009). In the Dongying Depression, the relative abundances of C_{27} , C_{28} and C_{29} aaa (20R) steranes change little with increasing heat, H₂ and CO₂ from the mantle-derived fluids (Supplementary Fig. S1). Moreover, their relative abundances show little difference between the active and stable zones (Fig. 7). Considering that C_{27} , C_{28} and C_{29} aaa (20R) steranes can be cracked by thermal stress (Peters and Moldowan, 1993; Requejo, 1994), the stable values of their relative abundances indicate these regular steranes may have been subjected to similar levels of alteration caused by mantle-derived fluids. As such, there is no significant variation in the relative abundances of C₂₇, C₂₈ and C₂₉ ααα (20R) steranes in the oils that have been affected by mantle-derived fluids. Gammacerane, which is a non-hopanoid C₃₀ triterpane, originates from phototrophic bacterial, which prefers hypersaline environments (Peters and Moldowan, 1993). The high gammacerane index (>0.2) indicates the water column during sedimentation was stratified due to salinity (Venkatesan, 1989; Sinninghe Damsté et al., 1995; Marynowski et al., 2000). As such, the variable values of gammacerane index in the oil samples from the stable zones point to different source rocks. In the oil samples from the active zones, in contrast, a negative covariance is apparent between the gammacerane index and R/Ra (Fig. 5(g)-(i)), suggesting the gammacerane index may not be applicable for tracing the source rock in the zones affected by mantle-derived fluids. This suggestion is consistent with the thermal simulation experiments conducted by Liu

426	(2008). His experiments suggested that the gammacerane index increased as
427	temperatures was raised to 350 °C, but then decreased as the temperature continued to
428	increase. As such, in the active zones, the negative covariance between the gammacerane
429	index and the R/Ra values indicates a reaction temperature of greater than 350 $^{\circ}$ C.
430	The C_{31}/C_{30} hopane is commonly used as an indicator of the depositional
431	environments of source rocks (Peters et al., 2005). The oil from marine environments,
432	for example, is characterized by C_{31}/C_{30} hopane greater than 0.25 (Peters et al., 2005).
433	Accordingly, the C_{31}/C_{30} hopane ratio in this study, which is greater than 0.3, points to
434	deposition in a marine environment. This, however, is not true, given that (1) marine
435	environments rarely occurred in the Dongying Depression during the Cenozoic, and (2)
436	the main source rocks in the Dongying Depression probably developed from sediments
437	that were deposited in a lacustrine environment (Hu et al., 1989; Group of Shengli Oil
438	Field Compiling Petroleum Geology, 1993). The erroneous explanation derived by using
439	C_{31}/C_{30} hopane may be attributed to the effect of mantle-derived fluids on the C_{31}/C_{30}
440	hopane. The negative correlation between the C_{31}/C_{30} hopane and $\delta^2 H_{CH4}$, and the
441	positive correlation between the C_{31}/C_{30} hopane and $\delta^{13}C_{CO2}$ (Fig. 9(b) and (c)) suggest
442	this parameter can be altered by H ₂ and CO ₂ . In contrast, the lack of correlation between
443	C_{31}/C_{30} hopane and R/Ra (Fig. 9(a)) suggests that the thermal energy has little impact on
444	the C ₃₁ /C ₃₀ hopane. Such relationships, however, seem incompatible with the suggestion
445	that the C-C bonds in high molecular weight hopane (i.e., C ₃₁) are more likely to be
446	fractured by thermal energy than those that have a low molecular weight (Zhu et al.,
447	2008). Such a contradiction may arise because previous studies have not considered the
448	effects of H ₂ and CO ₂ released from mantle-derived fluids. Therefore, mantle volatiles

may have a greater impact on the C_{31}/C_{30} hopane than the thermal input. There is, 449 however, no evidence to indicate the relative importance of hydrogenation and CO₂ on 450 C_{31}/C_{30} hopane. 451 The abundance of C₂₄ tetracyclic is typically considered indicative of a hypo-saline 452 environment, whereas the C₂₆ tricylic terpane is used as an indicator of the contribution 453 454 from land plants (Azevedo et al., 1992; Peters and Moldowan, 1993). As such, the ratio of C₂₄ tetracyclic/C₂₆ tricylic terpane is commonly examined during oil-source 455 correlation. In this study, C₂₄ tetracyclic/C₂₆ tricylic terpane and R/Ra exhibit a negative 456 457 covariance (Fig. 9(d)), indicating that abnormal heat energy could lead to a decrease in this parameter. Such a correlation is compatible with the suggestion that tricyclic 458 terpanes are thermally more stable than other terpanes (Peters and Moldwan, 1993). The 459 $\delta^2 H_{CH4}$ and $\delta^{13} C_{CO2}$ values, in contrast, are poorly correlated with the C_{24} tetracyclic/ C_{26} 460 tricylic terpane (Fig. 9(e) and (f)), suggesting that H₂ and CO₂ have little influence on this 461 462 parameter. Given that tricyclic terpanes are resistant to biodegradation and maturity (Seifert and 463 Moldwan, 1979; Peters and Moldwan, 1993), the distributions of tricyclic terpanes are 464 465 widely used for oil-source correlations (Bao et al., 2012). In this study, the variation of C_{21}/C_{23} tricylic terpane indicates that the oils in the stable zones seem relatively more 466 467 dominated by C_{23} component than the oils in the active zones (Fig. 9(g)). Such 468 phenomenon is consistent with the suggestion that abnormal heat may break the C-C 469 bounds in the high molecular components and lead to a relatively increase in the low 470 molecular weight components (Zhu et al., 2008). The C₂₁/C₂₃ tricylic terpane, in contrast, is not correlated with $\delta^2 H_{CH4}$ or $\delta^{13} C_{CO2}$ values (Fig. 9(h) and (i)), indicating that 471

- H_2 and CO_2 are probably not the key factors that affect the variation of C_{21}/C_{23} tricylic 472 473 terpane. 474 5.3.3. Variations of DBT/TF and DBF/TF The distribution patterns of TF are believed to reflect the type of source rock and 475 their depositional environments (Hughes, 1984). The relative abundance of DBT (i.e., 476 DBT/TF), for example, can be indicative of a suboxic environment, whereas that of DBF 477 (i.e., DBF/TF) has been used to indicate an oxic environment (Fan et al., 1990; Radke et 478 al., 2000; Chang et al., 2011). Previous studies attributed the systematic changes of 479 polycyclic aromatic hydrocarbons (PAHs) to thermal energy, as free radicals derived 480 from cracking oils could form PAHs by pyro-synthesis (Yunker et al., 2002; Zhu et al., 481 482 2008). In this study, however, the DBT/TF or DBF/TF ratios change little with increasing R/Ra. Instead, DBT/TF seems to be correlated with $\delta^2 H_{CH4}$ and $\delta^{13} C_{CO2}$, 483
- 484 indicating hydrogenation would cause an increase of DBT/TF (Supplementary Fig. 485 S2(b)), and CO₂ would lead to a decrease in DBT/TF (Supplementary Fig. S2(c)). Therefore, H₂ and CO₂ released from mantle-derived fluids may play a more important 486 487 role on the distributions of TF than thermal energy. This is probably because hydrogen gas could lead to a reducing environment, which favors the pyro-synthetic processes of 488 DBT, whereas CO₂ could result in an oxidizing environment favoring the pyro-synthetic 489 processes of DBF. There is, however, little evidence to evaluate the relative importance 490 491 of H₂ and CO₂ on the variations of DBT/TF and DBF/TF. 492
 - 5.4. Implications for oil-source correlation
- Source rocks from Es₄¹ are characterized by (1) pristane/phytane (i.e., Pr/Ph) <1, (2) 493
- C_{27} , C_{28} and C_{29} aaa 20R steranes having relatively equal distribution with a slight 494

495	predominance of C ₂₉ steranes, (3) high concentrations of gammacerane, with the
496	gammacerane index (i.e., gammacerane/ $\alpha\beta C_{30}$ hopane) averaging 1.1, and (4) C_{24}
497	tetracyclic/C ₂₆ tricyclic terpane values that are typically lower than 0.8 (Tan et al., 2002;
498	Zhu et al., 2004b; Li et al., 2007). The biomarkers in the source rock from Es ₃ ² , in
499	contrast, are characterized by the followings: (1) Pr/Ph is greater than 1, typically varying
500	from 1.0–2.5, (2) the distribution of $C_{27} \alpha\alpha\alpha$ 20R steranes relative to C_{29} is highly
501	variable, with C_{27}/C_{29} and C_{28}/C_{29} varying from 0.67–2.73 and from 0.55–1.02,
502	respectively (3) the gammacerane concentration is low, with the gammacerane index less
503	than 0.1, and (4) C ₂₄ tetracyclic/C ₂₆ tricyclic terpane values are typically greater than 1
504	(Tan et al., 2002; Zhu et al., 2004b; Li et al., 2007).
505	Based on biomarkers, the oil-source correlation has been comprehensively
506	investigated throughout the Dongying Depression (e.g., Tan et al., 2002; Zhu et al.,
507	2004b; Zhang et al., 2004; Li et al., 2007). Many of the results, however, are
508	controversial. Previous studies, for example, suggested that the oil from the Niuzhuang
509	Oilfield was derived largely from Es ₃ ² source rocks (Zhu et al., 2004a, 2004b), whereas
510	Li et al. (2007) stressed a greater contribution from Es ₄ ¹ source rock. Tan et al. (2002)
511	suggested that oil in the Gaoqing and Boxing oilfields was from Es41 source rocks and oil
512	from the Liangjialou Oilfield was from $\mathrm{Es_{3}^{2}}$ (Tan et al., 2002). Such oil-source
513	correlations, however, were challenged by Zhu et al. (2004b), who suggested that those
514	oils were the mixtures of oils from $\mathrm{Es_3}^2$ and $\mathrm{Es_4}^1$ source rocks. The root cause for this
515	controversy is probably the injudicious use of biomarkers that have been altered by
516	mantle-derived fluids, since oils can lose their original signatures due to high thermal
517	stress (e.g., Simoneit et al., 1996,; Zhang et al., 2009; Huang et al., 2016), hydrogenation

(e.g., Jin et al., 2007), and CO₂. As such, the influence of mantle-derived fluid has to be considered before oil-source correlations.

Based on its low R/Ra (<0.1), the oil (i.e., N25-35) from the Niuzhuang Oilfield seems to have experienced little alteration by mantle-derived fluids. This, together with its low level of biodegradation, means its original signature may have been retained. As such, this oil reflects a great contribution from Es₄¹ source rock, based on its biomarker distributions, including Pr/Ph (0.51), C₂₇/C₂₉ ααα 20R steranes (0.78), C₂₈/C₂₉ ααα 20R steranes (0.53), gammercerane index (0.24), and C₂₄ tetracyclic/C₂₆ tricyclic terpane (0.40).

Given that the relative abundances of C₂₇, C₂₈ and C₂₉ ααα (20R) steranes may not have been altered by mantle-derived fluids, they can be used for oil-source correlations in the oils that have suffered minimal levels of biodegradation (Fig. 7). In comparison to the source rocks from Es₃² and Es₄¹ (Tan et al., 2002), oil samples, except for B338-13 and H159, are located close to the boundary between these two source rocks (Fig. 7), indicating that most formed by mixing of oils sourced from Es₃² and Es₄¹. In contrast, oils from B338-13 and H159 show similar distribution patterns of C₂₇, C₂₈ and C₂₉ ααα (20R) steranes with Es₃², indicating they are mainly sourced from Es₃². Such oil-source correlations, however, cannot be identified by using Pr/Ph, gammacerane index and C₂₄ tetracyclic/C₂₆ tricyclic terpane, which are routinely used to discriminate between Es₄¹-sourced oils and Es₃²-sourced oils (Huang and Pearson, 1999; Li et al., 2003; Pang et al., 2003; Tan et al., 2002; Li et al., 2007). The correlation between Pr/Ph and gammacerane index, for example, would lead to an erroneous conclusion, which suggests that the oils were largely derived from the Es₄¹ source rocks (Fig. 10). Similarly, the C₂₄

tetracyclic/C₂₆ tricyclic terpane ratios are mostly lower than 1 (Table 3), falling within the range of Es₄¹ source rock. Therefore, biomarkers in the active zones have to be corrected before any oil-source correlation can be derived from them. Nevertheless, the manner of correcting those biomarkers remains open to debate.

Fig. 10. Variation of Pr/Ph with gammacerane index in oils (blue and red circles) and source rocks (yellow and green triangles) in the Dongying Depression. The source rock data are based on the results from Zhu and Jin (2003).

The flux intensity and chemical compositions of mantle-derived fluids in the

6. Conclusions

Dongying Depression are variable from locality to locality. The zones close to the deep faults show more intense activities of mantle-derived fluids than in the stable zones, which are relatively distant from deep faults. The mantle-derived fluids on the north part of the Dongying Depression have more H_2 and less CO_2 than those on the south part. The correlations between R/Ra and variable biomarkers, which are routinely used to make oil-source correlations, indicate that thermal energy can lead to alteration of the Pr/Ph, the gammacerane index, as well as the C_{24} tetracyclic/ C_{26} tricylic terpane and C_{21}/C_{23} tricylic terpane. The plots of biomarkers versus to $\delta^2 H_{CH4}$ and $\delta^{13} C_{CO2}$ reveal thermal cracking of C-C bonds in high molecular weight components and pyro-synthesis of PAHs could be impeded by the H_2 and/or CO_2 from mantle-derived fluids. Hydrogen gas, for example, could result in systematic changes of Pr/Ph, C_{31}/C_{30} hopane, and DBT/TF, whereas CO_2 could affect the values of $\Sigma nC_{21}/\Sigma nC_{22+}$, C_{31}/C_{30} hopane and

DBT/TF. The mantle-derived fluids, in contrast, result in no significant variations in the relative distributions of C_{27} , C_{28} and C_{29} $\alpha\alpha\alpha$ (20R) steranes. Based on relative abundances of C_{27} , C_{28} and C_{29} $\alpha\alpha\alpha$ (20R) steranes, the oil samples collected from the Dongying Depression are mostly the mixtures of E_{34} and E_{32} rock systems.

Acknowledgments

The research was supported by the Science Foundation of China University of Petroleum, Beijing (Grant 2462015YJRC019). We are grateful to the Sinopec Shengli Oil Company for arranging access data files; Sheng-Bao Shi, China University of Petroleum (Beijing), who provided valuable suggestions on CG and GC-MS analysis; Dr. Brian Jones, University of Alberta, who provided critical reviews that substantially improved the quality of the manuscript. We would like to thank the Editor and two anonymous reviewers for their constructive criticism and suggestions that considerably improved the manuscript.

References 577 Allen, M.B., Macdonald, D.I.M., Zhao, X., et al., 1997. Early Cenozoic two-phase 578 extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, 579 northern China. Mar. Pet. Geol. 14 (7-8), 951-972. https://doi.org/10.1016/S0264-580 8172(97)00027-5. 581 Azevedo, D.A., Aguino Neto F. R., Simoneit, B.R.T., et al., 1992. Novel series of 582 tricyclic aromatic terpanes characterized in Tasmanian tasmanite. Org. Geochem. 18 583 (1), 9-16. https://doi.org/10.1016/0146-6380(92)90138-N. 584 Bao, J.P., Kong, J., Zhu, C.S., et al., 2012. Geochemical characteristics of a novel kind of 585 marine oils from Tarim Basin. Acta Sedimentol. Sin. 30 (3), 580-587 (in Chinese). 586 https://doi.org/10.14027/j.cnki.cjxb.2012.03.009. 587 Bigi, S., Beaubien, S.E., Ciotoli, G., et al., 2014. Mantle-derived CO₂ migration along 588 active faults within an extensional basin margin (Fiumicino, Rome, Italy). 589 Tectonophysics 637, 137-149. https://doi.org/10.1016/j.tecto.2014.10.001. 590 Botz, R., Wehner, H., Schmitt, M., et al., 2002. Thermogenic hydrocarbons from the 591 offshore Calypso hydrothermal field, Bay of Plenty, New Zealand. Chem. Geol. 186 592 593 (3-4), 235-248. https://doi.org/10.1016/S0009-2541(01)00418-1. Caracausi, A., Martelli, M., Nuccio, P.M., et al., 2013. Active degassing of mantle-derived 594 fluid: a geochemical study along the Vulture line, southern Apennines (Italy). J. 595

597 https://doi.org/10.1016/j.jvolgeores.2012.12.005.

Geotherm.

Res.

253,

65-74.

596

Volcanol.

- 598 Caracausi, A., Nuccio, P.M., Favara, R., et al., 2008. Gas hazard assessment at the
- Monticchio crater lakes of Mt. Vulture, a volcano in southern Italy. Terra Nova 21 (2),
- 600 83-87. https://doi.org/10.1111/j.1365-3121.2008.00858.x.
- 601 Chang, X.C, Han, Z.Z, Shang, X.F., et al., 2011. Geochemical characteristics of aromatic
- 602 hydrocarbons in crude oils from the Linnan Subsag, Shandong Province, China. Chin.
- J. Geochem 30, 132-137. https://doi.org/10.1007/s11631-011-0494-6.
- 604 Cheng, P., Xiao, X.M., Tian, H., et al., 2013. Source controls on geochemical
- characteristics of crude oils from the Qionghai Uplift in the western Pearl River
- Mouth Basin, offshore South China Sea. Mar. Pet. Geol. 40, 85-98.
- 607 https://doi.org/10.1016/j.marpetgeo.2012.10.003.
- 608 Clifton, C.G., Walters, C.C., Simoneit, B.R.T., 1990. Hydrothermal petroleum from
- Yellowstone National Park, Wyoming, U.S.A. Appl. Geochem. 5 (1-2), 169-191.
- 610 https://doi.org/10.1016/0883-2927(90)90047-9
- Dai, J., Hu, G., Ni, Y., et al., 2009. Natural gas accumulation in Eastern China. Energy
- Explor. Exploit. 27 (4), 225-259. https://doi.org/10.1260/014459809789996147.
- Didyk, B., Simoneit, B.R.T., Brassell, S.C., et al., 1978. Organic geochemical indicators
- of palaeoenvironmental conditions of sedimentation. Nature 272, 216-222.
- 615 https://doi.org/10.1038/272216a0.
- Fan, P., Philp, R.P., Li, Z.X., et al., 1990. Geochemical characteristics of aromatic
- 617 hydrocarbons of crude oils and source rocks from different sedimentary environments.
- 618 Org. Geochem. 16 (1-3), 427-435. https://doi.org/10.1016/0146-6380(90)90059-9.
- 619 Fisher, R.A., 1992. Statistical Methods for Research Workers, Breakthroughs in
- 620 Statistics. Springer, New York.

- 621 Group of Shengli Oil Field Compiling Petroleum Geology, 1993. Shengli Oilfields.
- Petroleum Geology of China, Vol. 6. Petroleum Industry Press, Beijing (in Chinese).
- 623 Guan, L.F., Liu, W., Cao, C.H., et al., 2023. Origin, spatial distribution, and geological
- 624 implications of helium in fluids from the Tan-Lu fault zone. Geochim. 52 (5), 570-581
- 625 (in Chinese). https://doi.org/10.19700/j.0379-1726.2023.05.003.
- Hao, X.F., 2007. Conduit systems and reservoir-controlled model searching in Dongying
- Depression. Unpublished Ph.D thesis, Zhejiang University, China, pp. 105 (in Chinese).
- Hu, A.P., Dai, J.X., Yang, C., et al., 2009. Geochemical characteristics and distribution of
- 629 CO2 gas fields in Bohai Bay Basin. Pet. Explor. Dev. 36 (2), 181-189.
- https://doi.org/10.1016/S1876-3804(09)60118-X.
- 631 Hu, J., Xu, S., Tong, X., Wu, H., 1989. The Bohai Bay Basin, in: Zhu, X. (Ed.), Chinese
- Sedimentary Basins. Elsevier, Amsterdam, pp. 89-105.
- Huang, W.Y., Meinschein, W.G., 1979. Sterols as ecological indicators. Geochemica et
- 634 Cosmochemica Acta 43 (5), 739-745. https://doi.org/10.1016/0016-7037(79)90257-6.
- Huang, H.P., Pearson, M.J., 1999. Source rock palaeoenvironments and controls on the
- distribution of dibenzothiophenes in lacustrine crude oils, Bohai Bay Basin, eastern
- China. Org. Geochem. 30 (11), 1455-1470. https://doi.org/10.1016/S0146-
- 638 6380(99)00126-6.
- Huang, H.P., Zhang, S.C., Su, J., 2016. Palaeozoic oil-source correlation in the Tarim
- Basin, NW China: A review. Org. Geochem. 94, 32-46.
- https://doi.org/10.1016/j.orggeochem.2016.01.008.
- Hughes, W.B., 1984. Use of thiophenic organosulfer compounds in characterizing crude
- oils derived from carbonate versus siliciclastic sources, in: Palacas, J.G. (Ed.), AAPG

- studies in Geology Volume 18: Petroleum geochemistry and source rock potential of
- carbonate rocks. AAPG, Tulsa, USA, pp. 181-196.
- Jiang, Y.L., Rong, Q.H., Song, J.Y., 2003. Formation and distribution of oil and gas
- pools in boxing area of the Dongying depression, the Bohai Bay Basin. Petroleum
- Geology and Experiment 25 (5), 452-457 (in Chinese).
- https://doi.org/10.11781/sysydz200305452.
- Jin, Z., Hu, W., Zhang, L., et al., 2007. The activities of deep fluids and their effects on
- generation of hydrocarbon. China Science Publishing and Media Ltd., Beijing (in
- 652 Chinese).
- Jin, Z.J., Sun, Y.Z., Yang, L., 2001. Influences of deep fluids on organic matter of source
- rocks from the Dongying Depression, East China. Energy Explor. Exploit. 19 (5), 479-
- 486. https://doi.org/10.1260/0144598011492606.
- Jin, Z.J., Zhang, L.P., Yang, L., et al., 2004. A preliminary study of mantle-derived fluids
- and their effects on oil/gas generation in sedimentary basins. J PETROL SCI ENG 41
- 658 (1-3), 45-55. https://doi.org/10.1016/S0920-4105(03)00142-6.
- 659 Jin, Z.J., Zhang, L.P., Zeng, J.H., et al., 2002. Multi-origin alkanes related to CO2-rich,
- mantle-derived fluid in Dongying Sag, Bohai Bay Basin. Chin. Sci. Bull. 47 (20),
- 1756-1760. https://doi.org/10.1007/BF03183323.
- King, C.Y., 1986. Gas geochemistry applied to earthquake prediction: an overview. J.
- Geophys. Res. 91 (B12), 12269-12281. https://doi.org/10.1029/JB091iB12p12269.
- 664 Li, M.T., Shan, W.W., Liu, X.G., et al., 2006. Laboratory study on miscible oil
- displacement mechanism of supercritical carbon dioxide. Acta Petrologica Sinica 27
- 666 (3), 80-83 (in Chinese). https://doi.org/10.3321/j.issn:0253-2697.2006.03.017.

- 667 Li, Q., You, X.L., Jiang, Z.X., et al., 2024. Lacustrine deposition in response to the
- middle eocene climate evolution and tectonic activities, Bohai Bay Basin, China.
- Mar. Pet. Geol. 163, 106811. https://doi.org/10.1016/j.marpetgeo.2024.106811.
- 670 Li, S.M., Pang, X.Q., Li, M.W., et al., 2003. Geochemistry of petroleum systems in the
- Niuzhuang south slope of Bohai Bay Basin-part 1: Source rock characterization. Org.
- Geochem. 34 (3), 389-412. https://doi.org/10.1016/S0146-6380(02)00210-3.
- Li, S.M., Qiu, G.Q., Jiang, Z.X., et al., 2007. Origin of the subtle oils in the Niuzhuang
- Sag. Earth Science 32 (2), 213-218 (in Chinese). CNKI:SUN:DQKX.0.2007-02-008.
- 675 Liu, G., 2008. Thermal simulation study of crude oil from well S74 in the Tarim Basin (I)
- 676 geochemical characteristics of the simulation products. Petroleum Geology and
- Experiment 30 (2), 179-185 (in Chinese).
- 678 Liu, Q.Y., Wu, X.Q., Zhu, D.Y., et al., 2021. Generation and resource potential of
- abiogenic alkane gas under organic-inorganic interactions in petroliferous basins.
- Journal of Natural Gas Geoscience 6 (2), 79-87.
- https://doi.org/10.1016/j.jnggs.2021.04.003.
- Liu, Q.Y., Zhu, D.Y., Jin, Z.J., et al., 2017. Effects of deep CO₂ on petroleum and
- thermal alteration: The case of the Huangqiao oil and gas field. Chem. Geol. 469, 214-
- 684 229. https://doi.org/10.1016/j.chemgeo.2017.06.031
- 685 Liu, X., Xu, S., Li, P., 1995. Non-hydrocarbon (CO₂ and He) origin and accumulation,
- exploration and development technology, and synthesis use. National Eighth-Five-
- Plan Science and Technology Project, No. 85-925a-08, Beijing (in Chinese).

- Lyon, G. L., Hulston, J. R., 1984. Carbon and hydrogen isotopic compositions of New 688 Zealand geothermal gases. Geochim. Cosmochim. Acta 48 (6), 1161-1171. 689 https://doi.org/10.1016/0016-7037(84)90052-8. 690 Mango, F.D., 1992. Transition metal catalysis in the generation of petroleum and natural 691 gas. Geochim. Cosmochim. Acta 56 (1), 553-555. https://doi.org/10.1016/0016-692 693 7037(92)90153-A. Marynowski, L., Narkiewicz, M., Grelowski, C., 2000. Biomarkers as environmental 694 indicators in a carbonate complex, example from the Middle to Upper Devonian, Holy 695 Cross Mountains, Poland. Sediment. Geol. 137 (3-4), 187-212. 696
- 697 https://doi.org/10.1016/S0037-0738(00)00157-3.
- Niu, Z.C., Wang, Y.S., Wang, X.J., et al., 2022. Characteristics of crude oil with different
- sulfur content and genesis analysis of high-sulfur crude oil in eastern section of
- southern slope of Dongying Sag. Petroleum Geology and Recovery Efficiency 29 (5),
- 701 15-27 (in Chinese). https://doi.org/10.13673/j.cnki.cn37-1359/te.202108024.
- Nuccio, P.M., Caracausi, A., Costa, M., 2014. Mantle-derived fluids discharged at the
- 703 Bradanic foredeep/Apulian foreland boundary: The Maschito geothermal gas
- emissions (southern Italy). Mar. Pet. Geol. 55, 309-314.
- 705 https://doi.org/10.1016/j.marpetgeo.2014.02.009.
- 706 Palcsu, L., Vetö, I., Futó, I., et al., 2014. In-reservoir mixing of mantle-derived CO₂ and
- metasedimentary CH₄-N₂ fluids Nobel gas and stable isotope study of two
- multistacked fields (Pannonian Basin System, W-Hungary). Mar. Pet. Geol. 54, 216-
- 709 227. https://doi.org/10.1016/j.marpetgeo.2014.03.013.

- Pang, X.Q., Li, M.W., Li, S.M., et al., 2003. Geochemistry of petroleum systems in the
- Niuzhuang south slope of Bohai Bay Basin-part 2: Evidence for significant
- contribution of mature source rocks to "immature oils" in the Bamianhe field. Org.
- 713 Geochem. 34 (4), 931- 950. https://doi.org/10.1016/j.orggeochem.2004.12.001.
- Peters, K.E., Moldowan, J.M., 1993. The biomarker guide. Interpreting Molecular Fossils
- in Petroleum and Ancient Sediments. Prentice Hall, New Jersey.
- Peters, K.E., Walters, C.C., Moldowan, J.M., 2005. The Biomarker Guide. Biomarkers
- and Isotopes in Petroleum Exploration and Earth History, vol. 2. Cambridge
- 718 University Press, Cambridge.
- Powell, T.G., McKirdy, D.M., 1973. Relationship between ratio of pristane to phytane in
- 720 crude oil composition and geological environment in Australia. Nature Physical
- 721 Science 243, 37-39. https://doi.org/10.1038/physci243037a0.
- Radke, M., Vriend, S.P., Ramanampisoa, L.R., 2000. Alkyldibenzofurans in terrestrial
- rocks: influence of organic facies and maturation. Geochim. Cosmochim. Acta 64 (2),
- 724 275-286. https://doi.org/10.1016/S0016-7037(99)00287-2.
- Requejo, A.G., 1994. Maturation of petroleum source rocks. II. Quantitative changes in
- extractable hydrocarbon content and composition associated with hydrocarbon
- generation. Org. Geochem. 21 (1), 91-105. https://doi.org/10.1016/0146-
- 728 6380(94)90089-2.
- 729 Samuel, O.J., Cornford, C., Jones, M., et al., 2009. Improved understanding of the
- petroleum systems of the Niger Delta Basin, Nigeria. Org. Geochem. 40 (4), 461-483.
- 731 https://doi.org/10.1016/j.orggeochem.2009.01.009.

- Schoell, M. 1980. The hydrogen and carbon isotopic composition of methane from
- natural gases of various origins. Geochim. Cosmochim. Acta 44 (5), 649-661.
- 734 https://doi.org/10.1016/0016-7037(80)90155-6.
- Seifert, W.K., Moldowan, J.M., 1979. The effect of biodegradation on steranes and
- terpanes in crude oils. Geochimica et Coschimica Acta 43 (1), 111-126.
- 737 https://doi.org/10.1016/0016-7037(79)90051-6.
- Shen, B.J., Huang, Z.L., Liu, H.W., et al., 2007. Geochemistry and origin of gas pools in
- the Gaoging-Pingnan fault zone, Jiyang Depression. Chin. J. Geochem 26 (4), 446-
- 740 454. https://doi.org/10.1007/s11631-007-0446-3.
- Simoneit, B.R.T., Leif, R.N., Ishiwatari, R., 1996. Phenols in hydrothermal petroleums
- and sediment bitumen from Guaymas Basin, Gulf of California. Org. Geochem. 24
- 743 (3), 377-388. https://doi.org/10.1016/0146-6380(96)00008-3.
- Sinninghe Damsté, J.S., Kenig, F., Koopmans, M.P., et al., 1995. Evidence for
- gammacerane as an indicator of water column stratification. Geochim. Cosmochim.
- 746 Acta 59 (9), 1895-1900. https://doi.org/10.1016/0016-7037(95)00073-9.
- Sun, Y.Z, Jin, Y.J., 2000. Influences of basin brines on hydrocarbons of the Anthracosia
- shales from southwest Poland. ACTA GEOL SIN 74 (1), 93-101.
- 749 https://doi.org/10.1111/j.1755-6724.2000.tb00435.x.
- 750 Tan, L.J., Jiang, Y.L., Su, C.Y., et al., 2002. The characters of source rock and oil source
- 751 in the Boxing Oilfield, Dongying depression. Journal of the University of Petroleum,
- 752 China (Edition of Natural Science) 26 (5), 1-5 (in Chinese).
- 753 CNKI:SUN:SYDX.0.2002-05-001.

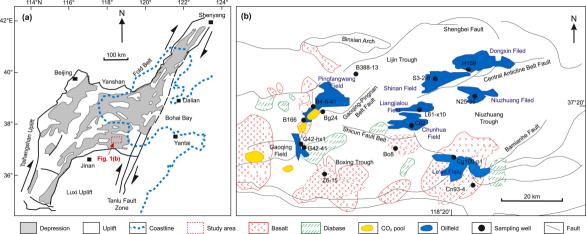
- Venkatesan, M.I., 1989. Tetrahymanol: its widespread occurrence and geochemical
- significance. Geochim. Cosmochim. Acta 53 (11), 3095-3101.
- 756 https://doi.org/10.1016/0016-7037(89)90190-7.
- 757 Wang, X.F., Liu, Q.Y., Liu, W.H, et al., 2022. Accumulation mechanism of mantle-
- derived helium resources in petroliferous basins, eastern China. SCI CHINA EARTH
- 759 SCI 65 (12), 2322-2334. https://doi.org/10.1007/s11430-022-9977-8.
- Wang, Y.P., Zhang, S.C., Wang, F.Y., et al., 2006. Thermal cracking history by
- laboratory kinetic simulation of Palaeozoic oil in eastern Tarim Basin, NW China,
- implications for the occurrence of residual oil reservoirs. Org. Geochem. 37 (12),
- 763 1803-1815. https://doi.org/10.1016/j.orggeochem.2006.07.010.
- Whiticar, M.J., 1990. A geochemical perspective of natural gas and atmospheric
- methane. Org. Geochem. 16 (1-3), 531-547. https://doi.org/10.1016/0146-
- 766 6380(90)90068-B.
- Xu, H.Y., Hou, D.J., Löhr, S.C., et al., 2023. Millimetre-scale biomarker heterogeneity in
- lacustrine shale identifies the nature of signal-averaging and demonstrates anaerobic
- respiration control on organic matter preservation and dolomitization. Geochim.
- 770 Cosmochim. Acta 348, 107–121. https://doi.org/10.1016/j.gca.2023.03.008.
- 771 Xu, Y.C., 1996. Mantle-derived rare gas in natural gas. Earth Science Frontiers 3 (3), 63-
- 71 (in Chinese). CNKI:SUN:DXQY.0.1996-03-006.
- Yang, Z.C., Zhang, J.L., 2008. Biomarkers of crude oils and oil-source correlation in the
- south slope of the Dongying depression. Periodical of Ocean University of China 38
- 775 (3), 453-460 (in Chinese). https://doi.org/10.3969/j.issn.1672-5174.2008.03.012.

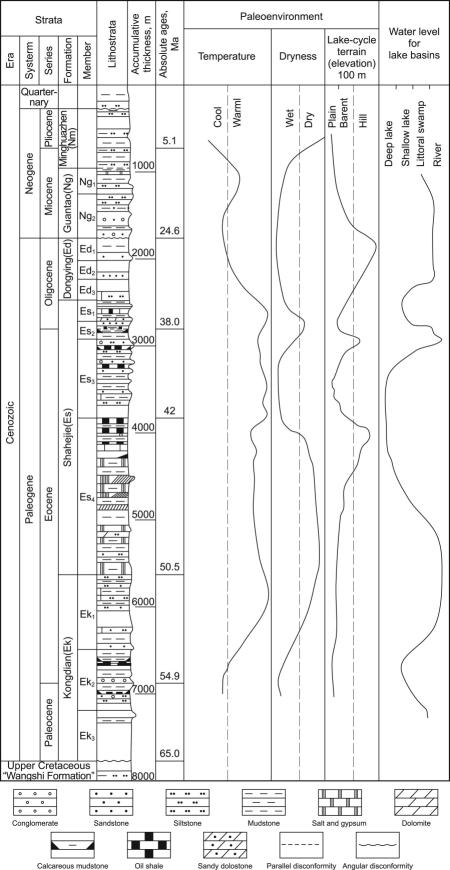
- Yunker, M.B., Macdonald, R.W., Vingarzan, R., et al., 2002. PAHs in the Fraser River
- basin: a critical appraisal of PAH ratios as indicators of PAH source and composition.
- Org. Geochem. 33 (4), 489-515. https://doi.org/10.1016/S0146-6380(02)00002-5.
- Zhang, K.J., 1997. North and South China collision along the eastern and southern North
- 780 China margins. Tectonophysics 270 (1-2), 145-156. https://doi.org/10.1016/S0040-
- 781 1951(96)00208-9.
- Zhang, L.Y., Liu, Q., Zhang, C.R., et al., 2004. Restudy of pool-forming pattern of
- Liangialou oilfield in Dongying sag. Oil Gas Geol. 25 (3), 253-257 (in Chinese).
- 784 10.3321/j.issn:0253-9985.2004.03.003.
- Zhang, L.P., Wang, A.G., Jin, Z.J., 2011. Origins and fates of CO₂ in the Dongying
- Depression of the Bohai Bay Basin. Energy Explor. Exploit. 29 (3), 291-314.
- 787 https://doi.org/10.1260/0144-5987.29.3.291.
- Zhang, L.P., Zhao, Y.Q., Jin, Z.J., et al., 2009. Geochemical characteristics of rare earth
- 789 elements in petroleum and their responses to mantle-derived fluid: an example from
- the Dongying Depression, East China. Energy Explor. Exploit. 27 (1), 47-68.
- 791 https://doi.org/10.1260/014459809788708200.
- Zhao, W.Z., Zhang, S.C., Wang, F.Y., et al., 2005. Gas accumulation from oil cracking in
- the eastern Tarim Basin: a case study of the YN2 gas field. Org. Geochem. 36 (12),
- 794 1602-1616. https://doi.org/10.1016/j.orggeochem.2005.08.014.
- 795 Zhu, G.Y., Jin, Q., 2003. Geochemical characteristics of two sets of excellent source
- rocks in Dongying Depression. Acta Sedimentol. Sin. 21 (3), 506-512 (in Chinese).
- 797 https://doi.org/10.3969/j.issn.1000-0550.2003.03.022.

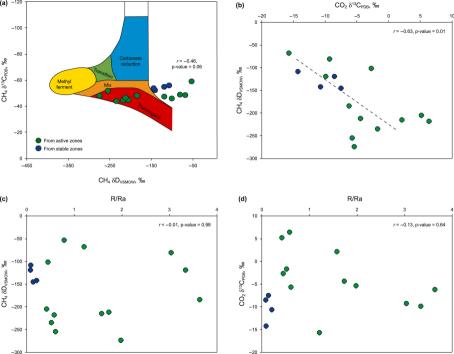
Zhu, D.Y., Jin, Z.J., Hu, W.X., et al., 2008. Effects of abnormally high heat stress on
petroleum in reservoir—An example from the Tazhong 18 Well in the Tarim Basin.
SCI CHINA SER D 51 (4), 515-527. https://doi.org/10.1007/s11430-008-0033-4.
Zhu, G.Y., Jin, Q., Dai, J.X., et al., 2004a. A study on periods of hydrocarbon
accumulation and distribution pattern of oil and gas pools in Dongying Depression.
Oil and Gas geology 25 (2), 209-215 (in Chinese). https://doi.org/10.3321/j.issn:0253
9985.2004.02.016.
Zhu, G., Jin, Q., Zhang, S., et al., 2004b. Combination characteristics of lake facies
source rock in the Shahejie Formation, Dongying Depression. ACTA GEOL SIN 78
(3), 416-427 (in Chinese). https://doi.org/10.3321/j.issn:0001-5717.2004.03.015.

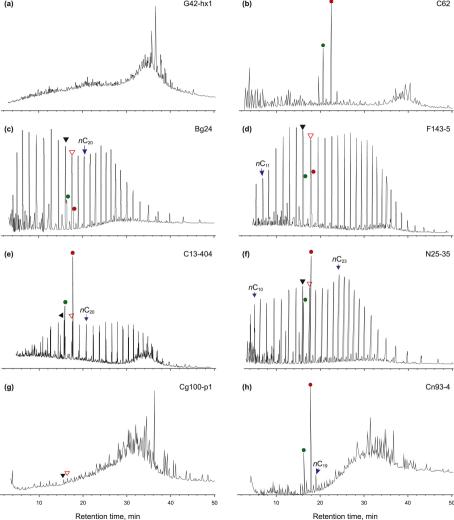
Table 1. Isotopic compositions of gas in the Dongying Depression, eastern China

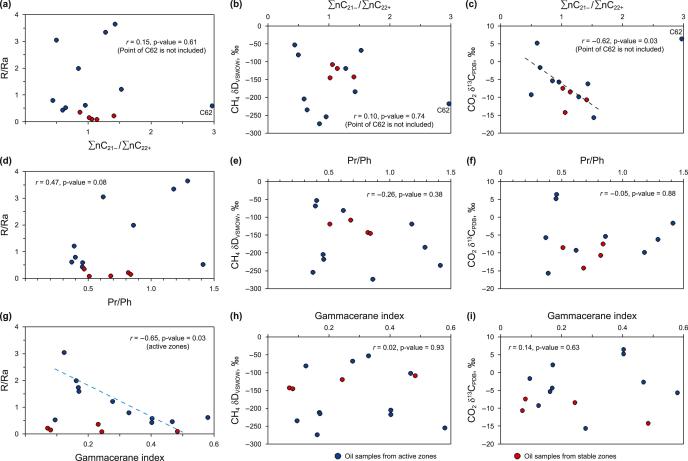
Magnitude of Mantle-derived fluid	Structure Location	Sampled Wells	Strata	Depth below sea level (m)	R/Ra	$\delta^{13}C_{\rm CO2}$	δ 2 H _{CH4}	δ $^{13}C_{CH4}$
	Gaoqing- Pingnan Fault Belt	G42-hx1	Ek	1080-1375	1.73	-4.4	-212.0	-46.3
		G42-41	Ek	980-1000	1.58	2.1	-215.0	-44.3
		B166	B166 O		3.34	-9.9	-119.2	-47.5
		Bg24	O	2404-2410	3.64	-6.2	-184.7	-47.8
		B4-6-41	Es_4	1535-1569	3.04	-9.3	-80.9	-48.9
		B338-13	Es ₃	1735-1738	0.79	n.d.	-53.1	-58.9
Active zones		В8	Es ₄	2650-2668	0.61	-5.7	-255.0	-51.9
	Shicun Fault Belt	C13-404	Es ₃ +Es ₄	1217-1315	0.42	5.2	-205.0	-45.1
		C62	Es ₃	1260-1268	0.58	6.4	-218.0	-44.3
		Cg100-p1	0	863-1010	0.45	-2.7	-101.7	-46.1
		Cn93-4	0	900-907	1.21	-15.7	-68.3	-48.38
-	Boxing	F143-5	Es ₄	3009-3062	1.98	-5.4	-274	-48.0
	Through	Z6-15	Es_1	1588-1895	0.52	-1.7	-235	-49.3
	Central	S3-2-8	Es ₃	3307-3328	0.21	-10.7	-142.6	-52.5
	Anticline Belt	H159	Es ₃	2946-2966	0.09	-14.3	-108.5	-55.8
Stable zones		N25-35	Es ₃	3256-3271	0.08	-8.5	-119.1	-55.0
	Niuzhuang Trough	L61-x10	Es ₃	3281-3341	0.14	-7.5	-145.4	-53.7
	-	C26-21	Es ₄	2600-2604	0.35	n.d.	n.d.	-56.0

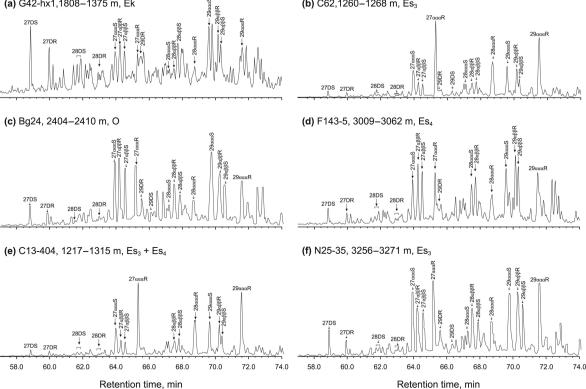

Notes: The ${}^{3}\text{He}/{}^{4}\text{He}$ isotope ratio is expressed as R/Ra, where R= $({}^{3}\text{He}/{}^{4}\text{He})_{\text{sample}}$ and Ra= $({}^{3}\text{He}/{}^{4}\text{He})_{\text{atm}}$ = 1.400E-6; n.d.=no data; R/Ra and $\delta^{13}\text{C}_{\text{CO2}}$ data for B166, Bg 24, B4-6-1, B338-13, Cg100-p1, Cn93-4, S3-2-8, H159, N25-35, L61-x10, and C26-21 first reported by Zhang et al., 2011.

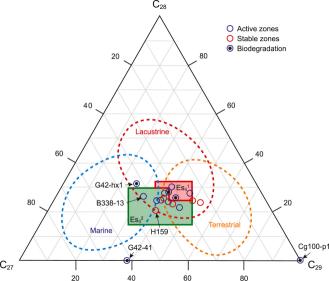

Table 2. Density and sulfur content of crude oils in the Dongying Depression

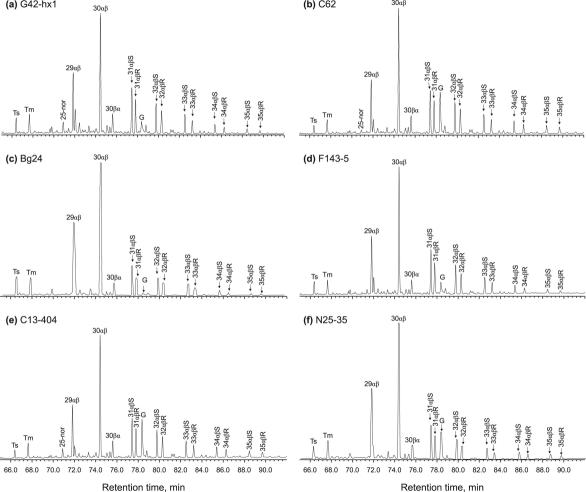

Magnitude of Mantle-derived fluid	Structure Location	Sampled Wells	Strata	Depth below sea level (m)	Specific gravity (g/cm ³)	API (°)	Sulfur content (ppm)
		G42-hx1	Ek	1080-1375	n.d.	n.d.	n.d.
	Gaoqing- Pingnan	G42-41	Ek	980-1000	n.d.	n.d.	n.d.
		B166	O	2425-2455	0.8580	33.42	0.23
	Fault Belt	Bg24	O	2404-2410	0.8783	29.61	n.d.
		B4-6-41	Es_4	1535-1569	0.8786	29.55	n.d.
		B338-13	Es_3	1735-1738	n.d.	n.d.	n.d.
Active zones	Shicun Fault Belt	B8	Es ₄	2650-2668	n.d.	n.d.	n.d.
		C13-404	Es ₃ +Es ₄	1217-1315	n.d.	n.d.	n.d.
		C62	Es ₃	1260-1268	n.d.	n.d.	n.d.
		Cg100-p1	0	863-1010	0.9859	12.02	1.76
		Cn93-4	O	900-907	n.d.	n.d.	n.d.
	Boxing	F143-5	Es ₄	3009-3062	n.d.	n.d.	n.d.
	Through	Z6-15	Es_1	1588-1895	n.d.	n.d.	n.d.
	Central	S3-2-8	Es ₃	3307-3328	0.8728	30.62	0.08
	Anticline Belt	H159	Es_3	2946-2966	0.9	25.72	0.96
Stable zones		N25-35	Es ₃	3256-3271	0.8903	27.44	0.66
	Niuzhuang Trough	L61-x10	Es_3	3281-3341	0.8603	32.98	n.d.
		C26-21	Es ₄	2600-2604	0.8880	27.85	1.01

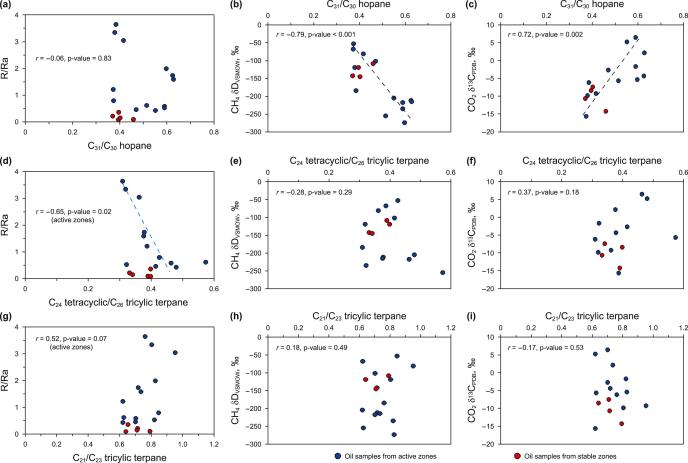

Table 3. Selected biomarker parameters of crude oils in the Dongying Depression

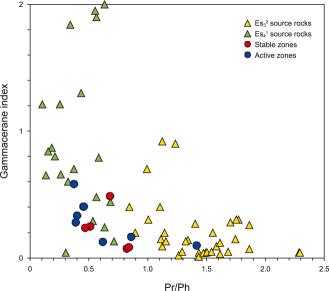

Magnitude of Mantle-derived fluid	Structure Location	Sampled Wells	Strata	Pr/Ph	Gammacerane index	C ₂₄ tetracyclic/ C ₂₆ tricylic terpane	DBT/ TF	DBF/ TF
Active zones	Gaoqing- Pingnan Fault Belt	G42-hx1	Ek	n.d.	0.17	0.38	0.49	0.08
		G42-41	Ek	n.d.	0.17	0.38	0.32	0.28
		B166	О	1.18	n.d.	0.32	0.85	n.d.
		Bg24	О	1.29	n.d.	0.31	0.88	n.d.
		B4-6-41	Es ₄	0.62	0.12	0.36	0.92	n.d.
		B338-13	Es ₃	0.40	0.33	0.43	0.81	n.d.
	Shicun Fault Belt	B8	Es ₄	0.37	0.58	0.57	0.14	0.33
		C13-404	Es ₃ +Es ₄	0.45	0.40	0.48	0.25	0.30
		C62	Es ₃	0.46	0.40	0.46	0.24	0.31
		Cg100-p1	О	n.d.	0.47	0.41	0.68	n.d.
		Cn93-4	O	0.39	0.28	0.39	1.00	n.d.
	Boxing	F143-5	Es ₄	0.86	0.16	n.d.	0.18	0.22
	Through	Z6-15	Es_1	1.41	0.10	0.32	0.31	0.23
	Central	S3-2-8	Es ₃	0.82	0.07	0.33	0.90	n.d.
Stable zones	Anticline Belt	H159	Es ₃	0.68	0.48	0.39	0.90	n.d.
	Niuzhuang Trough	N25-35	Es ₃	0.51	0.24	0.40	0.84	n.d.
		L61-x10	Es ₃	0.84	0.08	0.34	0.78	n.d.
	2	C26-21	Es ₄	0.47	0.23	0.40	0.82	n.d.











Journal Pre-proof

Declaration of interests

☑ The authors declare that they have no known competing financial interests or personal relationships hat could have appeared to influence the work reported in this paper.
☐The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: