

页岩基质孔隙油微观赋存及可动性定量表征

一以东营凹陷沙河街组为例

李俊乾1,2*, 宋兆京1,2, 王民1,2, 张鹏飞3, 蔡建超4

1 中国石油大学(华东)深层油气全国重点实验室,青岛 266580
 2 中国石油大学(华东)地球科学与技术学院,青岛 266580
 3 山东科技大学地球科学与工程学院,青岛 266590
 4 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
 * 通信作者,lijunqian1987@126.com

收稿日期:2023-08-02 国家自然科学基金项目(41972123、41922015)联合资助

摘要 页岩基质孔隙油微观赋存特征及可动性是制约陆相页岩油高效开采的关键要素。本文针对页岩基质孔隙 内不同相态油的含量、比例、分布及可动性开展定量化表征研究,从理论上提出了页岩油吸附量、游离量、可 动量评价模型以及吸附油占比评价模型(即吸附比例方程),建立了基于饱和—离心—核磁共振联合实验的孔 隙油微观赋存及可动性评价方法。上述模型与方法在渤海湾盆地济阳坳陷东营凹陷沙河街组页岩油储层中进 行了应用,揭示了实验条件(20 ℃、常压)下页岩基质孔隙中轻质油(正十二烷)微观赋存与可动性特征。结果 显示:(1)富有机质页岩吸附油、游离油含量普遍大于含有机质页岩,吸/游比主体介于1~2,不同类型页岩 中吸附油、游离油赋存空间具有差异性。(2)富有机质页岩吸附油平均密度(0.8331 g/cm³)略大于含有机质页岩 (0.8067 g/cm³),富有机质页岩吸附油平均厚度(1.7475 nm)约为含有机质页岩(0.5734 nm)的3倍,富有机质页岩 (0.8067 g/cm³),富有机质页岩吸附油平均厚度(1.7475 nm)约为含有机质页岩(0.5734 nm)的3倍,富有机质页岩 具有更强的油—岩相互作用。(3)游离油赋存孔隙直径下限(d_{min})数值上等于吸附油平均厚度与孔隙形状因子的乘 积,富有机质页岩 d_{min} 介于 1.1~3.4 nm,开始主要富集游离油的孔隙直径约为 30 nm。(4)富有机质页岩孔隙油可动性相对更好,其可动性指 数(平均 6.24 mg·g⁻¹·MPa⁻¹)高于含有机质页岩(平均 5.20 mg·g⁻¹·MPa⁻¹),孔隙油吸/游比约为 1.5 时具有较好可 动性。(5)以油—岩相互作用为纽带,构建了页岩含油性、储集性及页岩油可动性之间的耦合关系,并数学描述 了它们之间的内在联系,为寻找优质页岩油储层奠定了理论基础。

关键词 陆相页岩; 孔隙油; 微观赋存; 可动性; 定量表征; 东营凹陷

Quantitative characterization of microscopic occurrence and mobility of oil in shale matrix pores: A case study of the Shahejie Formation in the Dongying Sag

LI Junqian^{1,2}, SONG Zhaojing^{1,2}, WANG Min^{1,2}, ZHANG Pengfei³, CAI Jianchao⁴

引用格式:李俊乾,宋兆京,王民,张鹏飞,蔡建超.页岩基质孔隙油微观赋存及可动性定量表征一以东营凹陷沙河街组为例.石油科学通报, 2024,01:1-20

LI Junqian, SONG Zhaojing, WANG Min, ZHANG Pengfei, CAI Jianchao. Quantitative characterization of microscopic occurrence and mobility of oil in shale matrix pores: A case study of the Shahejie Formation in the Dongying Sag. Petroleum Science Bulletin, 2024, 01: 1-20. doi: 10.3969/j.issn.2096-1693.2024.01.001

1 National Key Laboratory of Deep Oil and Gas, China University of Petroleum-East China, Qingdao 266580, China

2 School of Geosciences, China University of Petroleum-East China, Qingdao 266580, China

3 College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

4 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing 102249, China

Abstract The microscopic occurrence and mobility of oil in shale matrix pores are the key factors that restrict the efficient exploitation of terrestrial shale oil. This paper carried out quantitative characterizations on the amount, proportion, distribution and mobility of oil with different states in shale matrix pores, and theoretically established a series of models evaluating adsorbed, free and mobile amounts, and oil-adsorbed proportion (i.e., adsorption ratio equation). A method based on saturation-centrifugation-nuclear magnetic resonance tests was established to evaluate the microscopic occurrence and mobility of pore oil. The aforementioned models and methods have been applied to the Shahejie Formation shale oil reservoir in the Dongying Sag, Jiyang Depression, Bohai Bay Basin, and revealed the microscopic occurrence and mobility of n-dodecane in shale matrix pores at 20 °C and atmospheric pressure. It is concluded that: (1) the amounts of adsorbed and free oil in organic-rich shales are generally higher than those in organic-bearing shales, and the ratio of adsorbed oil to free oil is mainly between 1 and 2. The storage spaces of adsorbed and free oil in different types of shales are obviously diverse. (2) The average density of adsorbed oil of organic-rich shale (0.8331 g/cm³) is slightly higher than that of organic-bearing shale (0.8067 g/cm³). The average thickness of adsorbed oil of organic-rich shale (1.7475 nm) is about 3 times that of organic-rich shale (0.5734 nm). It shows that the organic-rich shale has a stronger oil-rock interaction. (3) The minimum pore diameter of storing free oil (d_{\min}) is equal to the product of the average thickness of adsorbed oil and the pore shape factor. The dmin of organic-rich shale is of 3.5~10.5 nm, and pores of mainly storing free oil (mass ratio >70%) have a diameter of about 100 nm. The dmin of organic-bearing shale varies from 1.1~3.4 nm, and pores of mainly storing free oil have a diameter of about 30 nm. (4) The mobility index of oil in organic-rich shale (mean 6.24 mg·g⁻¹·MPa⁻¹) is higher than that in organic-bearing shale (mean 5.20 mg·g⁻¹·MPa⁻¹), and pore oil has a better mobility when the ratio of adsorbed oil to free oil is about 1.5. (5) Based on the oil-rock interaction, the coupling relationship of the oiliness and storage space of shale with the mobility of shale oil are established, and the internal relation between them is described mathematically, which will lay a theoretical foundation for discovering high-quality shale oil reservoirs.

Keywords terrestrial shale; pore oil; microscopic occurrence; mobility; quantitative characterization; Dongying Sag

doi: 10.3969/j.issn.2096-1693.2024.01.001

0 引言

随着常规油气资源开采难度日益增大,包括页岩 油气在内的非常规源岩层系油气逐渐成为我国油气增 储上产的主阵地和战略性接替能源[1-5]。近年来,中国 陆相页岩油在松辽盆地古龙凹陷白垩系青山口组、渤 海湾盆地沧东凹陷古近系孔店组、渤海湾盆地济阳坳 陷古近系沙河街组、鄂尔多斯盆地三叠系延长组、准 噶尔盆地吉木萨尔凹陷二叠系芦草沟组、江汉盆地潜 江凹陷古近系潜江组以及准噶尔盆地玛湖凹陷二叠系 风城组等多套层系获得页岩油工业油流[6-13],展现了 广阔的页岩油开发前景;国家能源局先后设立了新疆 吉木萨尔国家级陆相页岩油示范区(2020年)、大庆古 龙陆相页岩油国家级示范区(2021年)和胜利济阳陆相 断陷湖盆页岩油国家级示范区(2022年),推动了陆相 页岩油的规模化开发进程。但中国陆相页岩油的勘探 开发也面临着诸多挑战。相比于北美稳定克拉通、前 陆盆地的海相页岩油,中国陆相页岩油发育于断陷、 内陆坳陷盆地,页岩油储层具有岩性/岩相变化快、分 布不稳定、有机/无机非均质性强、矿物成分多样、孔 隙结构和类型复杂等特征^[1,6,14-15],确定页岩油"甜 点"段/区难度较大。因此,找准页岩油富集高产的 "甜点"位置是中国陆相页岩油高效开发的关键环节。

页岩油储集于页岩层系地层的多级孔-缝网络系 统内,其中裂缝系统(页理缝、层理缝、构造缝等)中 的页岩油可动能力强,可采性较好,是页岩油井初期 产量的主要来源[13]。但研究结果显示中国陆相页岩油 水平井分段压裂后产量递减快,一次采收率普遍小于 10%[13,16],这说明页岩油井排采过程中仍有大量的页 岩油(大于90%)被滞留于页岩基质内无法排出,如何 高效动用页岩基质孔隙系统中的石油资源(即页岩基 质孔隙油)是当前页岩油开采面临的重要挑战。因此, 页岩基质含油性和页岩油可动性长期以来作为页岩油 "甜点"评价的重头戏而受到业界的高度重视。目前, 在该领域已形成了众多实验评价方法,主要包括:① 含油饱和度指数法(OSI)^[17]、②多温阶热解法^[18-21]、③ 溶胀法^[22]、④T₁-T₂二维核磁法^[23]、⑤溶剂分步萃取 法[24-25]、⑥镜下观察法[26-27]、⑦饱和-离心-核磁联 合法^[28]、⑧抽提前后对比法^[29]等,为确定不同地区/ 凹陷的页岩油吸附量、游离量及可动量提供了技术支 撑。此外,分子模拟技术在页岩油多相态赋存机理分 析方面发挥了重要作用,揭示了吸附油呈多层状吸附 于页岩基质孔隙表面,游离油呈自由态分布于孔隙内 部^[30];吸附油、游离油的赋存特征受到孔隙大小及形 态、温度及压力条件、油组成、岩石表面性质等多种 因素的综合影响^[31-33]。然而,针对页岩基质微纳尺度 孔隙中不同相态油的含量、比例、分布及可动性的定 量化数学描述还比较薄弱,是亟待加强的一个研究方 向,也是当前页岩油地质评价领域的一大挑战。

很多学者从统计学角度认识了岩石物性、孔喉微 观结构、岩石组成、流体性质对页岩油赋存及可动性 的影响[24,29,34-40],但是它们之间的定量耦合关系还不 清楚,无据可依的情况下,增加了统计分析结果的多 解性。前期笔者通过考虑多层吸附、孔壁表面性质和 孔喉微观结构特征,初步构建了页岩微纳尺度孔隙中 不饱和吸附状态(0<相对压力P/P_<1)下单组分烃的吸 附量与游离量评价模型^[41];饱和吸附状态(P/P₀≥1)下 单组分烃和混合烃(残余油)的吸附量与游离量评价模 型^[34, 42],为页岩基质孔隙油的微观赋存与可动性定量 化研究奠定了理论基础。在此基础上,本文针对页岩 基质孔隙内不同相态油的含量、比例、分布及可动性 开展系统研究。以油-岩相互作用为纽带,建立了页 岩含油性、储集性(宏观物性、孔喉微观结构)及页岩 油可动性之间的耦合关系,并从数学角度揭示了它们 之间的内在联系:结合物理模拟实验(离心-核磁等) 定量评价了东营凹陷陆相页岩油微观赋存及可动性特 征。研究成果深化了对陆相页岩油微观赋存机制的认 识,有助于页岩油藏精细化地质"甜点"评价。

1 页岩基质孔隙油含量实验评价

1.1 理论与方法

按照赋存状态,页岩油可分为吸附油、游离油及 溶解油^[30,42-44]。吸附油是以吸附态(或类固态)吸着于 干酪根、无机矿物孔隙内表面,具有弱可动性,流动 较为困难;游离油是以自由状态分布于有机/无机孔 隙、裂缝内部,具有强可动性,是现实可采的资源; 溶解油是以互溶态吸收于干酪根大分子内部,赋存空 间显著受限,几乎不可流动^[18,38,42,45]。由上可见,页 岩基质孔隙内吸附油与游离油应是关注的重点,特别 是游离油的含量与分布评价对于页岩油开采至关重要。

页岩基质孔隙油的可动性与其赋存状态密切相 关^[30]。笔者基于页岩油赋存状态及可动性内在联系, 厘定了页岩基质孔隙油分类方案:在一定温度、压力 条件下,石油在页岩基质孔隙内由吸附油和游离油两 部分组成;其中游离油进一步分为毛细管束缚油和可 动油。在外界作用力(如离心力、驱替力)下,吸附油 几乎不可流动,游离油可流动,其可流动能力受页岩 孔喉微观结构的影响;可流动的游离油称为可动油, 不可流动的那部分游离油称为毛细管束缚油。随外界 条件的改变,毛细管束缚油可转化为可动油,且理论 最大可动油量等于游离油量,吸附油量是最小的束缚 油量。在页岩基质孔隙油有效分类的基础上,基于饱 和-离心实验,建立了一套完整的吸附油/游离油含量 实验评价方法及分析流程。

页岩基质孔隙油在离心(排出)过程中受到毛细管 力(P_c)和离心压力差(△P)的双重作用。对于某一油-岩体系,毛细管力是孔隙油排出的阻力,其与孔径成 反比,孔径越小,阻力越大,油越不容易排出;离心 压力差是促使孔隙油排出的动力,其值越大,油越容 易排出。根据受力分析,孔隙系统中的油存在以下 2 种情况:①当△P > P_c时,油被排出页岩孔隙,排出 油即为可动油;②当△P ≤ P_c时,油滞留于页岩孔隙 内,滞留油即为毛细管束缚油。然而,在某一离心压 力差条件下,可动用孔隙系统(三维连通网络)中的油 并非瞬时完全排出,而是需要一定的时间由大孔至小 孔、由外部至内部陆续排出,即可动油量是随时间变 化的,也就是说孔隙油的排出是个动态过程。定义某 一时刻的可动油比例为岩心累积排出的可动油量占岩 心中赋存游离油量的比例,表示如下:

$$f = \frac{Q_{\rm m}}{Q_{\rm f}} \tag{1}$$

式中, f为可动油比例, 无量纲; Q_m 为累积可动油量, mg/g; O_f 为游离油量, 即最大可动油量, mg/g。

在离心过程中孔隙油被排出的概率是离心压力差的函数,即随离心压力差增加,孔隙油被排出的概率 增大。结合动力学原理,可得在非平衡动态过程中可 动油比例随时间的变化速率为:

$$\frac{\partial f}{\partial t} = k_{\rm m} (1 - f) \Delta P - k_{\rm im} f \tag{2}$$

式中,t为时间,s; k_m 为孔隙油排出速率常数, $1/(s \cdot MPa)$; k_m 为孔隙油滞留速率常数,1/s; ΔP 为离心压力差, MPa。

式(2)中 $k_m(1-f) \triangle P$ 代表孔隙油排出速率; k_mf 代表孔隙油滞留速率。孔隙油排出速率与离心压力差呈 正相关、与可动油比例呈负相关,即离心压力差越大、 可动油比例越低,孔隙油越易于排出、排出速率越高; 反之亦然。在某一不变离心压力差条件下,随时间增 加,可动油比例增大,孔隙油排出速率逐渐降低;相 反,滞留速率与可动油比例呈正相关,随可动油比例 增加,孔隙系统中滞留的油受阻力越大、越难以排出, 滞留速率越高。因此,在孔隙油动态排出-滞留过程 中,排出速率逐渐降低、滞留速率逐渐增大,当孔隙 油的排出速率等于滞留速率,达到动态平衡,可动油

比例不再发生变化,即
$$\frac{\partial f}{\partial t} = 0$$
,进一步可得:
 $k_m(1-f)\Delta P = k_{im}f$ (3)

由式(3)可得:

$$f = \frac{\Delta P}{\frac{k_{\rm im}}{k_{\rm m}} + \Delta P} \tag{4}$$

令△*P*_L=*k*_{in}/*k*_m,将式(1)代入式(4)可得平衡条件 下可动油量与离心压力差的关系式^[46],如下:

$$Q_{\rm m} = \frac{Q_{\rm f} \Delta P}{\Delta P + \Delta P_{\rm I}} \tag{5}$$

式中, ΔP_L 为中值压力差,即可动油量达到最大可动 油量的一半时对应的离心压力差,MPa。 ΔP_L 反映了 孔隙油排出的难易程度,其值越小,代表孔隙油排出 速率常数越大、滞留速率常数越小,孔隙油更易于排 出孔隙。

进一步,可将式(5)转化为:
$$\frac{1}{Q} = \frac{\Delta P_{\rm L}}{Q_{\rm c}} \frac{1}{\Delta P} + \frac{1}{Q_{\rm c}}$$
(6)

采用离心实验测试的数据,建立1/Q_m与1/△P之

表1 页岩样品基本信息

Table 1 Basic information of shale samples

间的线性关系,可以估算出 $Q_f = \Delta P_L$ 值。同时,根据 测试的总含油量,可计算出吸附油量 Q_a :

$$Q_{\rm a} = Q_{\rm t} - Q_{\rm f} \tag{7}$$

式中, Q_t 为总含油量, mg/g; Q_a 为吸附油量, mg/g。

1.2 实例验证与结果

本次采用的14个泥页岩样品来源于渤海湾盆地济 阳坳陷东营凹陷内9口油井的主力页岩层段(沙三上 亚段、沙四下亚段),样品信息如表1所示,取心井位 分布见文献[28]。根据有机质丰度、无机矿物组分特 征(图1),将这些样品分成两类:I类以富有机质的钙 质页岩为主(含1个富泥质页岩样品),发育纹层结构; TOC含量1.64%~2.43%(平均2.03%),黏土矿物、石 英、方解石和白云石平均含量分别为38.0%、21.0%、 22.8%和9.0%,以黏土矿物、方解石和石英为主。II 类以含有机质的富硅质、硅质泥岩为主,发育块状结 构;另有1个样品为含有机质富泥质页岩,发育纹层 结构;TOC含量0.13%~1.56%(平均0.71%),黏土矿 物、石英、方解石和白云石平均含量分别为30.0%、 34.2%、6.9%和9.9%,以石英和黏土矿物为主。为 便于叙述,本文将泥页岩统称为页岩。

将页岩样品制备成岩心柱,经过抽真空干燥后, 进行抽真空加压饱和轻质油(以正十二烷为例),然后 针对饱和岩心柱开展不同转速的离心测试,在每个离 心平衡时取出岩心并测试质量,对部分样品同时测试

井位	样品编号	岩石类型	层位	埋深/m	TOC含量/%	φ	$S_{\rm BET}^{a}/(m^2/g)$	$V_{\rm NMR}^{\rm a}/(10^{-3} {\rm ~cm}^3/{\rm g})$
	Y556-5S	富有机质钙质页岩	Es ³ L	2448.2	2.22	0.15	15.11	64.31
永 556	Y556-6S	富有机质钙质页岩	$\mathrm{Es_3^L}$	2471.6	2.00	0.12	14.35	51.96
	Y556-1	富有机质钙质页岩	$\mathrm{Es_3^L}$	2448.3	2.02	0.20	18.13	76.95
利斜 884	LX884-2S	富有机质钙质页岩	$\mathrm{Es_4}^{\mathrm{U}}$	3502.4	2.43	0.12	13.20	51.92
	LX884-1	富有机质钙质页岩	$\mathrm{Es_4}^{\mathrm{U}}$	3506.2	1.64	0.12	12.53	46.43
河 172	H172-4S	富有机质富泥质页岩	$\mathrm{Es_3}^{\mathrm{L}}$	3428.6	1.88	0.11	12.43	43.99
· 四人	L76-1	含有机质富硅质泥岩	$E{s_4}^{\rm U}$	3783.6	0.46	0.08	23.36	37.36
朱 /0	L76-2	含有机质富硅质泥岩	$E{s_4}^{\rm U}$	3783.6 0.	0.30	0.10	12.28	36.46
樊 41	F41-2	含有机质富硅质泥岩	$\mathrm{Es}_{3}{}^{\mathrm{L}}$	2679.3	1.24	0.07	10.58	29.62
滨 172	B172-3	含有机质硅质页岩	$\mathrm{Es_4}^{\mathrm{U}}$	3405.6	0.16	0.04	4.45	13.19
牛 5	N5-3	含有机质富硅质泥岩	$\mathrm{Es_4}^{\mathrm{U}}$	2740.8	0.13	0.07	5.72	26.34
梁 752	L752-2	含有机质硅质泥岩	$\mathrm{Es_3^L}$	3560.1	0.49	0.06	21.99	21.47
河 88	H88-1	含有机质富泥质页岩	$\mathrm{Es_3}^{\mathrm{L}}$	3042.6	1.56	0.11	34.00	45.93
	H88-2	含有机质硅质页岩	$\mathrm{Es_3}^{\mathrm{L}}$	3044.6	1.36	0.09	20.40	36.88

图 1 页岩有机/无机组分特征

Fig. 1 Organic and inorganic composition characteristics of the shales

了核磁共振信号。离心实验的温度设定为 20 ℃(低温 可抑制烃挥发)、压力为常压条件,离心平衡时间为 4 h。详细实验流程见文献[28]。图 2a、2b中展示了 14个岩心的测试结果,显示随离心压力差增大,可动 油量逐渐增加,其变化趋势可通过式(5)所示的方程 描述。通过式(6)拟合实验数据(图 2c、2d),依据线 性关系的截距和斜率可得到岩心中游离油量和中值压 力差。进而,依据饱和油量计算出吸附油含量。分析 结果见表 2。本次实验页岩中吸附油量介于 5~30 mg/g 之间、游离油量介于 5~25 mg/g之间, 吸附油占比普 遍大于 50 wt%, 吸/游比(吸附油与游离油质量比)主 体介于 1~2 之间,显示了页岩基质孔隙中吸附油占 优势的基本特点。总体上,富有机质页岩中吸/游比 略高于含有机质页岩。富有机质页岩中吸/游比介于 1.13~1.97之间,平均1.50;含有机质页岩中吸/游比 介于 0.61~2.36 之间,平均 1.43。此外,富有机质页岩 的吸附油、游离油含量普遍大于含有机质页岩,属于 页岩油富集的优势岩相类型。根据吸附油、游离量含

图 2 可动油量与离心压力差的关系(a, 富有机质页岩; b, 含有机质页岩)和可动油量倒数与离心压力差倒数之间的关系(c, 富有机质页岩; d, 含有机质页岩)(离心数据来源于文献[28])

Fig. 2 Relationship between mobile oil amount and centrifugal pressure difference (a, organic-rich shales; b, organic-bearing shales) and Relationship between reciprocal mobile oil amount and reciprocal centrifugal pressure difference (c, organic-rich shales; d, organic-bearing shales) (centrifugal data from literature [28])

井位	样品编号	$Q_{\rm a}^{\rm a}/({\rm mg/g})$	$Q_{\rm f}^{\rm a}/({\rm mg/g})$	$r_{\rm a}/\%$	$\triangle P_{\rm L}/{\rm MPa}$	R	$I_{\rm m}/({\rm mg}\cdot{\rm g}^{-1}\cdot{\rm MPa}^{-1})$
	Y556-5S	25.6499	22.7790	52.96	3.58	1.13	6.36
永 556	Y556-6S	22.8126	15.7480	59.16	4.34	1.45	3.63
	Y556-1	29.7995	19.7629	60.13	2.08	1.51	9.50
利斜 884	LX884-2S	24.2691	14.9925	61.81	1.68	1.62	8.92
	LX884-1	19.5194	14.8810	56.74	4.91	1.31	3.03
河 172	H172-4S	22.6118	11.4811	66.32	1.91	1.97	6.01
梁 76	L76-1	13.2080	11.2233	54.06	2.57	1.18	4.37
	L76-2	13.4538	18.4843	42.12	4.10	0.73	4.51
樊 41	F41-2	11.4005	8.2713	57.95	2.72	1.38	3.04
滨 172	B172-3	5.8023	3.9510	59.49	0.70	1.47	5.64
牛 5	N5-3	7.5495	12.3305	37.98	2.78	0.61	4.44
梁 752	L752-2	13.3200	5.9952	68.96	1.35	2.22	4.44
ेल ००	H88-1	21.6670	14.3266	60.20	1.63	1.51	8.79
{µ] 00	H88-2	18.6081	7.8864	70.23	1.24	2.36	6.36

表 2 离心实验测试分析结果

 Table 2
 Results obtained by the centrifugation test

^a离心数据来源于文献[28],对部分数据进行了修正; Q_a 为吸附油量,mg/g; Q_f 为游离油量,mg/g; r_a 为吸附油质量百分比,%; ΔP_L 为中值压力差,MPa;R为吸/游比,无量纲; I_m 为可动性指数,mg·g⁻¹·MPa⁻¹。

量及吸/游比,可将页岩含油性进行分类(图 3),后文 中将结合可动性进一步讨论。

东营凹陷页岩油储层发育多种储集空间类型,主 要包括碎屑粒间孔、有机质和黏土矿物收缩孔、黏 土矿物晶间孔、碳酸盐晶间孔和溶蚀孔^[47]。在岩石 组分-孔喉微观结构匹配关系分析的基础上,通过吸 附油、游离油含量与岩石组分含量之间的相关性统 计(图 4),可以揭示页岩油赋存空间。结果显示,随 TOC含量增加,吸附油含量线性增加(图 4a),有机 质含量对所有类型页岩的吸附油赋存具有相似的控制 作用。含有机质页岩中吸附油量与黏土含量呈一定正

Fig. 3 Evaluation chart on the oil storage amount in shale matrix pores

相关性(图 4b)、与方解石含量无明显相关性(图 4c), 这是因为研究区具有"有机质-黏土矿物共生、有机 质-碳酸盐矿物分异"的沉积特点[48],因此在黏土矿 物相关孔隙中富集了一定量的吸附油。图 5a中展示了 黏土含量和TOC含量呈正相关性,也可仿证该结论。 在富有机质页岩中吸附油主要赋存于有机质孔内部, 可能有少量吸附油赋存于方解石相关孔隙内。对于游 离油而言,富有机质页岩中游离油主要赋存于方解石、 有机质相关的孔隙中(图 4d、4e); 含有机质页岩中游 离油主要赋存于有机质、石英矿物相关孔隙中(图 4d、 4f)。图 4d 中两个数据点偏离趋势线,是因为该两个样 品具有较高的石英矿物含量,石英相关孔隙中赋存了 较多的游离油,弥补了有机质贫化的负面影响。同理, 图 4e 中所示的具有低方解石含量的页岩中游离油量偏 高,是因为该页岩较高的有机质含量(TOC=2.43%)的 贡献。基于石英含量与TOC含量的负相关性(图 5b), 富有机质页岩中石英含量与游离油量呈现负相关性 (图 4f)是因为石英含量增加对应有机质含量降低,进 而降低了游离油量;在含有机质页岩中随石英含量增 加,尽管TOC含量降低,但碎屑粒间孔提供了一部分 游离油储集空间, 使得游离油量增加。

根据上述分析,建立了研究区页岩基质孔隙油微 观赋存模式(图 6)。富有机质页岩呈现富有机质黏土 纹层与富碳酸盐纹层叠置的"双层结构"特征,在富 有机质黏土纹层的有机质孔内赋存吸附油和部分游离

图 4 吸附油量、游离油量与岩石组分含量的关系 (a) 吸附油量与 TOC 含量; (b) 吸附油量与黏土矿物含量; (c) 吸附油量与方 解石含量; (d) 游离油量与 TOC 含量; (e) 游离油量与方解石含量; (f) 游离油量与石英含量

Fig. 4 Relationships of adsorbed and free amounts of shale oil with rock composition contents (a) adsorbed oil amount and TOC content; (b) adsorbed oil amount and clay mineral content; (c) adsorbed oil amount and calcite content; (d) free oil amount and TOC content; (e) free oil amount and calcite content; (f) free oil amount and quartz content

图 5 页岩 TOC 含量与黏土含量 (a)、石英含量 (b) 的关系 Fig. 5 Relationships of TOC content with clay (a) and quartz (b) contents

油,而在富碳酸盐纹层的方解石晶间孔和溶蚀孔内赋 存大量游离油及少量吸附油(图 6a~c)。正是由于在不 同纹层结构中页岩油赋存状态及方式的这种差异性, 构成了有利的"生烃-储集"纹层组合^[10,49]。含有机 质页岩不发育纹层,吸附油、游离油遍布基质孔隙内, 在有机质孔和黏土矿物晶间孔内赋存吸附油,游离油 则赋存于有机质孔和颗粒碎屑粒间孔内(图 6d~f)。

2 页岩基质孔隙油含量数学描述

页岩基质孔隙中吸附油受范德华力、库仑力等作

用呈多层状吸附于有机质和无机矿物孔隙表面,游离 油呈自由状态分布于孔隙内部^[32-33]。理论上,页岩吸 附油量受控于含油孔隙比表面积、吸附相密度和吸附 相厚度,游离油量则受控于含油孔隙体积与游离相密 度^[42],可数学表示为:

$$Q_{\rm a} = S_{\rm t} H \rho_{\rm l} \tag{8}$$

$$Q_{\rm f} = (V_{\rm t} - S_{\rm t} H)\rho_2 \tag{9}$$

式中, S_t 为含油孔隙比表面积, m^2/g ; V_t 为含油孔隙体 积, 10^{-3} cm³/g; $\rho_1 和 \rho_2 分别为吸附油和游离油的平均$ 密度, g/cm³;*H*为平均吸附厚度, nm。

图 6 页岩基质孔隙油微观赋存模式 (a) LX884-1 样品岩心柱; (b) LX884-1 样品薄片,正交光,×50,发育黏土、石英、方 解石矿物; (c)富有机质页岩孔隙油微观赋存模式; (d) N5-3 样品岩心柱; (e) N5-3 样品薄片,正交光,×50,发育石英、斜 长石、方解石矿物; (f)含有机质页岩孔隙油微观赋存模式

Fig. 6 Shale matrix pore oil microscopic occurrence pattern (a) LX884–1 core column; (b) LX884–1 thin slice, orthogonal light, × 50, developed clay, quartz and calcite minerals; (c) microscopic occurrence pattern of pore oil in organic-rich shale; (d) N5–3 core column; (e) N5–3 thin slice, orthogonal light, × 50, developed quartz, plagioclase and calcite minerals; (f) microscopic occurrence pattern of pore oil in organic-bearing shale

考虑到现有实验方法的精度和探测范围,含油孔 隙的体积(V)和比表面积(S)很难测试出准确数值。比 如常见的低温氮气吸附法、高压压汞法、覆压孔渗法 等测试的岩心孔体积和比表面积,由于使用的探测流 体与页岩油(本次研究为正十二烷)的性质不同,实验 探测范围和真实情况存在一个系统误差。此外,湿重 法和核磁共振法未考虑页岩油赋存状态,在测试孔体 积时也存在一定误差。假定系统误差为定值,可将实 际值和测试值进行线性转换,如下:

$$S_{\rm t} = S_{\rm mt} - C_1 \tag{10}$$

$$V_{\rm t} = V_{\rm mt} - C_2 \tag{11}$$

式中, S_{mt} 为含油孔隙比表面积实验测试值, m^2/g ; V_{mt} 为含油孔隙体积实验测试值, 10^{-3} cm³/g; C_1 和 C_2 分别为比表面积和孔体积测试的系统误差,单位分别为 m^2/g 和 10^{-3} cm³/g。

进而,可得:

$$Q_{\rm a} = (S_{\rm mt} - C_1) H \rho_1$$
 (12)

$$Q_{\rm f} = ((V_{\rm mt} - C_2) - (S_{\rm mt} - C_1)H)\rho_2$$
(13)

变形可得:

$$Q_{\rm a} = S_{\rm mt} H \rho_{\rm l} - C_{\rm l} H \rho_{\rm l} \tag{14}$$

$$\left(V_{\rm mt} - \frac{Q_{\rm f}}{\rho_2}\right) = \frac{Q_{\rm a}}{\rho_1} + C_2 \tag{15}$$

通过建立*Q*_a~*S*_{mt}、(*V*_{mt} - *Q*_ℓ/ρ₂)~*Q*_a之间的线性拟 合关系,可以确定吸附油平均密度和平均厚度。如图 7 所示,本研究中富有机质页岩的吸附油平均密度为 0.8331 g/cm³、吸附油平均厚度为 1.7475 nm,含有机 质页岩的吸附油平均密度为 0.8067 g/cm³、吸附油平均 厚度为 0.5734 nm。两种类型页岩吸附油的能力差异较 大,富有机质页岩具有更强的油-岩相互作用,这也 是相同比表面积情况下富有机质页岩吸附油含量更高 的原因。

进一步根据孔体积、比表面积、孔隙大小和孔隙 形态之间的关系^[42],可得到页岩基质孔隙中吸附油/ 游离油含量与油-岩相互作用、孔喉微观结构和岩石 物性之间的耦合关系,如下所示:

$$Q_{\rm a} = \frac{FH\rho_{\rm l}\phi S_{\rm o}}{d_{\rm m}\rho_{\rm a}} \tag{16}$$

$$Q_{\rm f} = \left(1 - \frac{FH}{d_{\rm m}}\right) \frac{\phi S_{\rm o} \rho_2}{\rho_{\rm a}} \tag{17}$$

式中, ø为岩石孔隙度, 分数; S。为岩石含油饱和度,

分数; ρ_a 为岩石视密度, g/cm³; d_m 为岩石平均孔隙 直径, nm; F为孔隙形状因子, 无量纲, 平行板状孔 F=2, 柱状孔F=4, 球形孔F=6。

从公式上可以看出,页岩吸附油与游离油含量是 页岩孔喉微观结构、岩石物性与油-岩相互作用耦合 的结果。页岩油吸附量和游离量均受吸附油厚度、孔 隙大小及形态、岩石孔隙度、含油饱和度和岩石视密 度的综合影响;吸附量与吸附油平均密度相关,游离 量与游离油平均密度相关。以东营凹陷页岩油储层为 例,可以得到以下几点认识:①不同岩相类型页岩的 例,可以得到以下几点认识:①不同岩相类型页岩的 闭油-岩相互作用具有明显差异性,集中体现于吸附油 平均厚度、密度的不同,进而直接影响了不同岩相类 型页岩的吸附油含量。富有机质页岩比含有机质页岩 的吸附油平均密度略高,但富有机质页岩中吸附油厚 度是含有机质页岩的3倍,因此富有机质页岩中油-岩相互作用更强、吸附油量更多。②采用表3所示的 数据,分析了在吸附参数一定时,孔喉微观结构对含 油量的控制作用。随平均孔隙直径增加吸附油量逐渐 降低、游离油量逐渐增加; 孔隙形状因子越大, 吸附 油量越高、游离油量越低(图 8)。不同岩相类型页岩 的变化规律差异较大, 富有机质页岩的孔隙直径大于 约 100 nm时, 孔隙内以游离油为主, 吸附油含量较 低, 且不受孔隙形态的影响(图 8a、8c); 含有机质页 岩开始大量富集游离油的孔隙直径拐点约为 30 nm(图 8b、8d)。③孔隙度和含油饱和度对含油量也有直接的 影响,随孔隙度、含油饱和度增加, 吸附油、游离油 含量均增大。可将孔隙度与含油饱和度的乘积定义为 含油孔隙度,并用来反映含油性。本研究中含油饱和 度为 1, 孔隙度与含油饱和度的乘积等于孔隙度, 从 图 9上可以看出吸附油量和游离油量均随孔隙度增加 而呈线性增加, 验证了公式 16 和 17 的正确性。因此, 含油孔隙度是一个识别页岩含油性"甜点"有效的参 数。

明确游离油赋存的孔径下限(即可动油理论孔径 下限)对于页岩油"甜点"预测具有重要的指导作用。 前人通过实验确定了不同地区页岩油的可动孔径下

图 7 关键吸附参数评估交汇图

Fig. 7 Cross plots of evaluating the key adsorption parameters

表 3 东营凹陷沙河街组页岩参数

Table 3	Shale parameters	of the Shahejie Formation	in Dongying sag
---------	------------------	---------------------------	-----------------

属性	关键参数	数值范围	数据来源
	孔隙度/%	3.1~27.4(平均值 9.6)	
岩石宏观物性	含油饱和度/%	4.2~80.4(平均值 37.6)	张林晔等[50]
	视密度/(g/cm³)	1.79~2.57(平均值 2.31)	
了呢????	孔隙形状因子	2~6	Li et al. ^[34]
11听天1凤 邓纪行149	孔隙直径/nm	1~1000	随机设定
	吸附油密度/(g/cm³)	富有机质: 0.8331; 含有机质: 0.8066	本次研究
油-岩相互作用	游离油密度/(g/cm³)	0.7494	本次研究
	吸附厚度/nm	富有机质: 1.7475; 含有机质: 0.5734	本次研究

图 8 平均孔隙直径对吸附油量、游离油量的影响(a, c 为富有机质页岩; b, d 为含有机质页岩) Fig. 8 Influence of average pore diameter on adsorbed and free oil amounts (a and c, organic-rich shale; b and d, organicbearing shale)

图 9 孔隙度与吸附油量、游离油量的关系 Fig. 9 Relationships of porosity with adsorbed and free oil

限,例如刘惠民等^[47]认为东营凹陷泥页岩中游离油赋 存孔径(直径)下限以及游离油大量富集的孔径门槛值 分别为 10 nm 和 30 nm; 王民等^[29]认为济阳坳陷页岩 中游离油赋存孔径下限为 5 nm; 党伟等^[39]等认为鄂 尔多斯盆地延安地区延长组 7 段 3 亚段陆相页岩孔径 大于 3 nm时, 孔隙内主要为游离油。本次研究提出了 游离油赋存孔隙直径下限(d_{min})的理论数值, 应为吸附 油平均厚度(H)与孔隙形状因子(F)的乘积(FH)。直径 $\leq d_{min}$ 的孔隙内全部为吸附油, 不含游离油。根据吸 附油平均厚度和F值范围(2~6),可知富有机质页岩的 d_{min} 介于 3.5~10.5 nm之间,数值大小与孔隙形态有关; 含有机质页岩的 d_{min} 介于 1.1~3.4 nm之间,低于富有 机质页岩的孔隙直径下限。

3 页岩基质孔隙油微观分布规律

3.1 理论与方法

基于前述吸附油量、游离油量数学模型(式 16 和 17),可进一步推导出页岩基质孔隙中吸附油量占比的 数学表达式,即吸附比例方程^[51-52]。该方程是用来描 述一定温度、压力条件下,液体在多孔介质孔隙内以 吸附与游离两种状态共存时,孔隙内吸附流体所占总 量的质量比。该方程不仅适用于页岩油^[28, 34],也适用 于页岩孔隙水^[46, 51]、煤岩孔隙水^[53],因此具有普遍性 意义。吸附比例方程表示如下:

$$r_{\rm a} = \frac{1}{1 + \frac{\rho_2}{\rho_1} \left(\frac{d_{\rm m}}{FH} - 1\right)}$$
(18)

根据公式可知,页岩基质孔隙中吸附油占比(r_a) 与吸附油/游离油密度比(ρ₁/ρ₂)、孔径/吸附厚度比 (d_m/H)及孔隙形态(F)相关。对于一定的孔隙形态,随 d_m/H 增加, r_a 逐渐减小; 随 ρ_1/ρ_2 增加, r_a 逐渐增加; F 值从2至6逐渐增加时, r_a 值逐渐增加;当 $d_m=FH$ 时, 吸附比例等于1(图10)。通过吸附比例方程,可认识 页岩孔隙系统中吸附油占比及分布特征。图 11 中展 示了东营凹陷2类页岩中吸附油占比的分布特征,随 孔径增加,吸附油占比降低、游离油占比增加。富有 机质页岩由于具有较高的吸附油平均厚度及密度。同 等尺度孔隙中页岩油吸附比例要高于含有机质页岩。 根据吸附油与游离油含量占比随孔隙直径的变化趋 势(图 11),可以看到富有机质页岩>100 nm的孔隙中 吸附油占比<30%、游离油占比>70%;含有机质页 岩>30 nm的孔隙中吸附油占比<30%、游离油占比 >70%。通过吸附/游离比例分布特征,可初步判断在 页岩基质连通孔隙系统中吸附油、游离油的赋存孔隙 空间。

为了揭示页岩基质孔隙油的微观分布, 仅仅确定

了不同尺度孔隙中吸附油、游离油的占比是不够的, 难以确定出不同尺度孔隙中吸附油、游离油的含量。 根据吸附量、游离量数学模型,可以获得一个岩心中 吸附油、游离油的含量,但这些油在复杂的孔隙系统 中是怎么分布的?页岩基质孔隙中吸附油、游离油微 观分布的确定还是一个巨大挑战。通常,核磁共振 T₂ 谱可以反映孔隙中流体的分布,但是难以分解出吸附 态和游离态流体的分布。吸附比例方程的提出为解决 该问题提供了一个新思路。本研究将吸附比例方程与 经典的核磁共振理论相结合,建立了不同含油率页岩 中吸附油/游离油微观分布的定量评价方法。

首先,根据孔体积、比表面积、孔隙大小和孔隙 形态之间的关系,将吸附比例方程(式18)改为如下形 式^[34]:

$$r_{\rm a} = \frac{1}{1 + \frac{\rho_2}{\rho_1} \left(\frac{V_{\rm t}}{S_{\rm t}H} - 1\right)}$$
(19)

公式(19)中的孔体积与比表面积参数在核磁共振 横向弛豫时间(*T*₂)的计算公式中也有出现,这为采用 核磁共振技术快速、无损的检测页岩孔隙油分布提供 了可能。核磁共振横向驰豫时间*T*₂的计算公式通常简 写为:

$$\frac{1}{T_2} = \rho \frac{S_t}{V_t} \tag{20}$$

图 10 页岩油吸附比例的影响因素 (a, d, F=6; b, e, F=4; c, f, F=2) Fig. 10 Factors influencing the adsorption ratio of shale oil (a, d, F=6; b, e, F=4; c, f, F=2)

图 11 不同尺度孔隙中吸附油与游离油比例分布 (a)富有机质页岩; (b)含有机质页岩 Fig. 11 Distributions of adsorbed and free oil ratios in pores with different size (a) organic-rich shale; (b) organic-bearing shale

式中,*T*₂为横向驰豫时间, ms; ρ为表面弛豫率, nm/ms。 进一步,结合公式(19)和(20)可得^[51]:

$$r_{\rm a} = \frac{1}{1 + \frac{\rho_2}{\rho_1} \left(\frac{T_2 \rho}{H} - 1\right)}$$
(21)

基于核磁共振 T₂ 谱,结合公式(21),理论上可计算 出核磁共振 T₂ 谱上每个 T₂ 值对应的吸附比例^[51],即为:

$$r_{\rm ai} = \frac{1}{1 + \frac{\rho_2}{\rho_1} \left(\frac{T_{2i}\rho}{H} - 1\right)}$$
(22)

式中, T_{2i} 为核磁共振 T_2 谱上第 $i \uparrow T_2$ 值; $r_{ai} \Rightarrow T_{2i}$ 值对 应的吸附比例($0 < r_{ai} \le 1$, 当计算值 $r_{ai} > 1$ 时, 取 $r_{ai} = 1$), 分数。

基于饱和油页岩的核磁共振 T_2 谱,分析不同表面 驰豫率时核磁共振计算吸附比例与离心测试吸附比例 之差的绝对值(即 δ 值),当 δ 值=0时可得页岩表面驰 豫率。在确定表面驰豫率参数之后,根据式(22)可计 算页岩孔隙内吸附油微观分布特征。总信号和吸附油 信号的差值可得游离油信号分布。此外,根据页岩含 油量和核磁共振信号幅度之间的线性关系,亦可将吸 附油与游离油的信号分布转换成含油量分布。根据式 (22)可以看出, T_2 值反映了孔隙尺寸, T_2 值越大,吸 附油占比越小。吸附参数和表面驰豫率反映了油-岩 相互作用,孔径相同时,密度比(ρ_1/ρ_2)和吸附厚度H越大,反映油-岩相互作用力越强,吸附油占比越大; 表面驰豫率 ρ 越小,反映了油-岩相互作用力越强, 吸附油占比越大。

3.2 实例分析

对于同一岩相类型的页岩,吸附参数相同,但每

个岩石的表面驰豫率是不同的。因此、每个岩石具 有特定的吸附油、游离油分布特征。以含有机质的 L752-2样品和富有机质的Y556-1样品为例,可得 表面驰豫率分别为 2.574 nm/ms 和 1.499 nm/ms。在确 定了表面驰豫率之后,采用式(22),可计算出饱和页 岩中吸附油信号分布,总信号和吸附油信号的差值可 得游离油信号分布。图 12a和图 12d展示了两个页岩 样品饱和油、吸附油和游离油的分布特征,吸附油主 要分布于较小T2值范围内,游离油主要分布于较大T2 值范围,但两者有一定的重叠区间。此外,研究发现 吸附油和游离油均有可能出现双峰分布,并非完全是 呈高斯分布的特征。通过离心过程可获得不同含油率 (本文定义为含油量和饱和油量的比值)页岩,根据不 同含油率页岩的核磁共振信号幅度可计算出页岩含油 率。在离心过程中,L752-2样品中吸附油分布变化较 小(图 12e), Y556-1 样品中吸附油分布发生了微调, 由双峰变成了单峰,但信号幅度变化不大(图 12b); 而游离油在离心过程中含量逐渐减少, 谱峰逐渐降低、 左移(图 12c和 12f)。这说明在离心过程中,吸附油很 少被排出,也进一步验证了第1.1小节中的结论。

根据孔径(*d*)和*T*₂值之间的线性关系(*d*=*F*ρ*T*₂),*F* 取平均值4,可将*T*₂谱分布转换为孔径分布。如图13 所示,Y556-1样品吸附油主要分布于<100 nm的孔隙 中、游离油主要分布于>7 nm的孔隙中;L752-2 样品 吸附油主要分布于<30 nm的孔隙中、游离油主要分布 于>3 nm的孔隙中。游离油分布主峰孔径明显大于吸 附油分布主峰孔径。相比于L752-2 样品,Y556-1 样 品具有更高的信号幅度,因此含油量较高;Y556-1 样品含油分布的主峰孔径为 20 nm,高于L752-2 样品

图 12 不同赋存状态页岩油 T_2 谱分布 (a) Y556-1 样品吸附油与游离油分布; (b) Y556-1 样品在不同含油率下的吸附油分布; (c) Y556-1 样品在不同含油率下的游离油分布; (d) L752-2 样品吸附油与游离油分布; (e) L752-2 样品在不同含油率下的吸附 油分布; (f) L752-2 样品在不同含油率下的游离油分布

Fig. 12 T_2 spectral distributions of shale oil in different occurrence states (a) adsorbed and free oil distributions of sample Y556-1; (b) adsorbed oil distribution of sample Y556-1 under different oil-bearing rate; (c) free oil distribution of sample Y556-1 under different oil-bearing rate; (d) adsorbed and free oil distributions of sample L752-2; (e) adsorbed oil distribution of sample L752-2 under different oil-bearing rate; (f) free oil distribution of sample L752-2 under different oil-bearing rate

的主峰孔径 2 nm,因此L752-2 样品具有更高的吸附 比例。

4 页岩基质孔隙油可动性表征

页岩油可动性与页岩油赋存特征(赋存状态、不同状态含量及比例)及赋存的储集空间(孔喉大小及分布)密不可分,同时也受储层流体条件(油组分、温度、压力)的影响,因此页岩油可动性是一个综合的储层属性。赵文智院士等认为可从热成熟度、气油比、原油密度、烃组分构成、保存条件等方面评价滞留烃流动性^[15,54]。也有学者采用可动系数(轻质游离油量与滞留油量之比)^[20]、可动流体饱和度^[36,40,55]、OSI^[17]、游离油量及可动油量^[28]等参数来反映页岩油可动性,尚未形成统一的认识。笔者认为页岩油可动性表征存在以下难点:①可动性内涵不清晰,没有形成行业统一的定量表征参数,如何量化可动性存在较大争议; ②可动性不是一个独立的页岩油属性,它依赖于页岩油的赋存和页岩孔喉结构,如何体现它们三者之间的内在联系,难度较大。

本研究提出页岩油可动性至少包括2个方面的内涵:可动潜力和可动能力。可动潜力是指在一定开采

条件下页岩基质孔隙中有多少页岩油可以流动,体现 了页岩油现实可采资源,可通过最大可动量来表示。 最大可动量即为游离量,反映了页岩油赋存特征,其 含量越大,页岩油可采资源潜力越大,越有利于页岩 油开发。可动能力是指页岩油排出基质孔隙的难易程 度,体现了页岩油开采的难度,可通过中值压力差来 表示。中值压力差反映了页岩孔喉微观结构,其值越 低,代表页岩基质孔隙中的油越容易排出,反映页岩 油开采过程中需要较小的压力降即可采出大量的页岩 油。若页岩中值压力差越高,页岩油排出难度越大, 需要较高的压力降才能采出页岩油。较大的压力降可 能会导致储层较强的应力敏感负效应,对储层造成较 大的伤害。综上,页岩油可动性好应该是可动潜力大、 可动能力强,即具有较高的游离油含量、较低的中值 压力差。如图 14 所示,展示了页岩油在外力(如离心 力)作用下排出基质孔隙的过程。曲线A和曲线B具有 相同的可动潜力,即最大可动量相同(Q_{fA}=Q_B),但曲 线B的可动能力要差于曲线A($\triangle P_{IB}$ >△ P_{IA})。曲线B 和曲线C相比,两者有相同的可动能力,即中值压力 差相同($\Delta P_{LB} = \Delta P_{LC}$),但曲线C的可动潜力差于曲线 $B(Q_{fB} < Q_{fA})$ 。综合来看,曲线A反映了最好的可动性, 既具有较高的可动潜力,又具有较大的可动能力。

图 13 不同赋存状态页岩油赋存空间分布 (a) Y556-1 样品吸附油与游离油分布; (b) Y556-1 样品在不同含油率下的吸附油分 布; (c) Y556-1 样品在不同含油率下的游离油分布; (d) L752-2 样品吸附油与游离油分布; (e) L752-2 样品在不同含油率下的 吸附油分布; (f) L752-2 样品在不同含油率下的游离油分布

Fig. 13 Spatial distributions of shale oil in different occurrence states (a) adsorbed and free oil distributions of sample Y556–1; (b) adsorbed oil distribution of sample Y556–1 under different oil-bearing rate; (c) free oil distribution of sample Y556–1 under different oil-bearing rate; (d) adsorbed and free oil distributions of sample L752–2; (e) adsorbed oil distribution of sample L752–2 under different oil-bearing rate; (f) free oil distribution of sample L752–2 under different oil-bearing rate

在第 1.1 小节中已介绍了基于离心实验获得游离 油量(Q_f)和中值压力差(△P_L)的相关理论和分析方法。 根据游离油量和中值压力差交汇图,游离油量越高、 中值压力差越小的区域代表页岩油具有较好的可动性。 然而,实验结果显示游离油量和中值压力差呈一定正 相关性(图 15),也就是说游离油量高(可动潜力大)的 页岩中值压力差也大(可动能力小)、游离油量低(可 动潜力小)的页岩中值压力差反而小(可动能力大)。 这为判断页岩油可动性增加了难度。为了定量化页岩 油可动性,本研究提出了可动性指数(*I*_m),其数值上 等于游离油量除以中值压力差,依据该参数来反映页 岩基质孔隙油的可动性。

评价页岩油可动性影响因素也即是考察游离油量 和中值压力差的影响因素。游离油量的影响因素前 文已经论述;影响中值压力差的因素主要为页岩孔 喉大小分布(孔径分布)的复杂性,体现于孔隙-喉 道(孔-喉)的配置关系。在不同尺度连通孔隙组成的 系统中,就两个连通孔隙比较而言,较小孔可视为喉 道,较大孔则为孔隙。如图 16a 所示的 3 个页岩样品 的孔径分布特征, 主峰位于 10~30 nm, 但从孔径范 围来看, B172-3 样品孔径分布较为集中, 几乎不发 育 30 nm以上孔隙; LX884-2S样品发育 30~100 nm 的孔隙; Y556-5S样品发育 30~300 nm的孔隙, 且 在 100~200 nm 之间出现了次峰和少量 3~5 µm 的较大 孔隙。因此,页岩孔径分布复杂性由大到小依次为 Y556-5S样品、LX884-2S样品和B172-3样品。相应 的,页岩油可动能力由高到低依次出现于B172-3样 品、LX884-2S样品和Y556-5S样品。此外,孔径呈 多峰分布的页岩中孔隙油的可动能力差于单峰分布的 页岩,如L76-1样品和LX884-2S样品。而且,页岩

孔径分布越不连续,孔隙油可动能力越差,如L76-1 样品和Y556-1样品(图 16b)。这些现象说明了页岩 孔喉微观结构的复杂性对页岩油可动能力有较大影 响,其本质是孔-喉配置关系发挥了作用。对于孔径 较为均一的页岩,其孔-喉配置关系较好,具有较低 的孔喉比(孔隙和喉道的尺寸比),有利于页岩油流 动;而孔径分布较为复杂的页岩,其孔-喉配置关系 相对较差,孔喉比较高,存在孔隙屏蔽效应,部分可 动空间受阻,不利于页岩油流动(图 16c)。从页岩吸 附油、游离油微观分布角度也可论证这一观点。上文 中展示了Y556-1样品和L752-2样品中吸附油、游 离油微观分布。Y556-1样品具有较高的游离油含量 (19.7629 mg/g), L752-2 样品具有较低的游离油含 量(5.9952 mg/g), 说明Y556-1样品具有较大的可动 潜力;但Y556-1样品的中值压力差(2.08 MPa)大于 L752-2样品(1.35 MPa),可动能力较差。从分布谱 图上可以看出, Y556-1 样品中游离油赋存空间大于 L752-2样品,但是其分布呈现孤立双峰型,相比于

图 15 页岩基质孔隙油可动性评价图版

统计结果显示吸附比例与中值压力差呈现负相关 性(图 17a)。如前文所述,吸附比例和平均孔隙直径 呈现非线性负相关性,即孔径越大、吸附比例越低。 也就是说,平均孔径较大的页岩中由于出现了较多的 大孔隙,导致较差的孔-喉配置关系,在大孔隙中赋 存的游离油排出受阻,导致页岩油可动能力降低。因 此,对于微纳尺度孔喉系统发育的页岩而言,吸附比 例较低的页岩,大孔隙占比较高,平均孔径较大,但 是孔-喉配置关系较差,不利于页岩油流动;相反, 吸附比例较高的页岩,小孔隙占比较高,平均孔径较 小,孔-喉配置关系较好,有利于页岩油流动。此外, 统计结果也显示随页岩油吸附比例增加,页岩中游离 油量逐渐降低(图 17b)。这就导致随吸附比例增加, 一方面页岩油可动能力增加,另一方面页岩油可动潜 力降低。这是两个完全相反的趋势。根据吸附比例与 可动性指数的关系(图 17c),可以看出在吸附比例约 为60%时,可动性指数出现极大值。因此可以推断当 页岩油吸附比例 <60 % 时,页岩油可动能力增强起主 导作用, 使得页岩油可动性指数增加; 当页岩油吸附 比例>60%时,页岩油可动潜力降低起主导作用,使 得页岩油可动性指数降低。根据这个结论反观吸附油 量-游离油量图版(图3),可知孔隙油吸/游比约等于 1.5 时可动性较好。相对而言,富有机质页岩中孔隙油 可动性指数(平均 6.24 mg·g⁻¹·MPa⁻¹)高于含有机质页 岩(平均 5.20 mg·g⁻¹·MPa⁻¹), 富有机质页岩中孔隙油 可动性相对较强。

5 页岩油储层属性耦合关系

页岩油各储层属性(包括页岩储集性、含油性及

图 16 页岩高压压汞的孔径分布(a, b)和孔-喉配置模式(c)

Fig. 16 Pore size distribution based on high pressure mercury injection test (a, b) and pattern diagram of pore-throat configuration (c)

页岩油可动性)不是独立存在的,而是具有明确的内 在联系^[56],通过为储层属性赋予特征参数后,可以从 数学角度描述它们之间的内在联系(图 18),以更深层 次的理解页岩油储层属性耦合关系。在储层属性耦合 关系中,油-岩相互作用扮演着至关重要的作用,是 衔接页岩储集性(孔喉微观结构、宏观物性)、含油性 和页岩油可动性的纽带。对于一个岩石,其由岩石骨 架和储集空间耦合构成,页岩油赋存于储集空间,若 无油-岩相互作用发生,则所有孔隙油都处于单一游 离态。页岩含油量通过孔隙度、含油饱和度、游离油 密度等参数即可计算获得。此时,页岩油可动性仅受 岩石孔喉微观结构的影响。若存在油-岩相互作用, 页岩储集空间中吸附油与游离油共存,在孔喉微观结 构(孔喉大小、分布和形态)的叠加影响下,不同相态 孔隙油赋存量及其分布更加复杂,页岩油可动性影响 机制也更加复杂,将受到页岩孔喉微观结构和油赋存 状态的综合影响。因此,总结成一句话,即为页岩储 集空间是一个由不同尺度孔隙连接构成的三维网络, 在孔隙网络中发生油-岩相互作用形成不同相态孔隙 油(吸附油、游离油),吸附油与游离油在三维孔隙网 络中的含量、比例和分布,制约了孔隙油的可动性及 可采性。由于岩性/岩相与岩石骨架组成有关,表现

图 17 页岩油吸附比例与中值压力差(a)、游离油量(b)、可动性指数(c)的关系

Fig. 17 Relationships between adsorption ratio of shale oil with median pressure difference (a), free oil amount (b) and mobility index (c)

图 18 页岩油储层评价参数耦合关系

Fig. 18 Coupling relationships among shale oil reservoir evaluation parameters

出不同的储集空间发育特征和油-岩相互作用,因此 具有不同的含油性和页岩油可动性。尽管不同盆地/ 区块的页岩油储集层的地质条件(如岩性、岩相、成 熟度、温压系统、流体性质、岩石组成、储集空间 等)千差万别,但控制页岩油赋存和可动的本质相同。 通过从数学上建立储层属性之间的耦合关系,不仅具 有预测功能,也便于不同盆地之间差异性对比,对于 寻找页岩油富集、可动的"甜点"位置具有积极作 用,同时为后期的页岩油提高采收率提供精细的储层 描述。具体表现在3个方面:其一,可明确页岩基质 孔隙中游离油含量及其分布空间,落实现实可采的页 岩油资源;其二,可明确页岩基质孔隙中吸附油含量 及其分布空间,锁定页岩油开采后期挖潜目标;其 三,可揭示页岩油可动性主控因素及机制,助力页岩 油高效开采。

6 结论

本文构建了页岩油储层属性(页岩含油性、储集性 及页岩油可动性)之间的耦合关系,建立了页岩基质 孔隙中不同相态油(吸附油、游离油)的含量、比例、 分布及可动性数学评价模型和实验分析方法。基于饱 和-离心-核磁共振联合实验,以渤海湾盆地济阳坳 陷东营凹陷沙河街组沙三下亚段和沙四上亚段页岩油 储层为例,分析了不同岩相类型页岩基质孔隙中轻质 油(正十二烷)的吸附量、游离量及其比例、分布、可 动性特征,主要结论如下:

(1)页岩吸附油量介于 5~30 mg/g、游离油量介于 5~25 mg/g,吸/游比(吸附油与游离油质量比)主体介 于 1~2。富有机质页岩的吸附油、游离油含量普遍大 于含有机质页岩,且富有机质页岩中吸/游比略高于含 有机质页岩。富有机质页岩中吸附油主要赋存于有机 质孔内,含有机质页岩中吸附油赋存于有机质孔和黏 土孔内;富有机质页岩中游离油主要赋存于方解石孔、 有机质孔内,含有机质页岩中游离油主要赋存于有机 质孔、石英矿物孔内。

(2)富有机质页岩吸附油平均密度为 0.8331 g/cm³、吸附油平均厚度为 1.7475 nm,含有机质页岩吸附油平均密度为 0.8067 g/cm³、吸附油平均厚度为 0.5734 nm,显示富有机质页岩具有更强的油 – 岩相互作用。富有机质页岩的孔隙直径大于约 100 nm时,孔隙内以游离油为主(>70%),吸附油含量较低(<30%);含有机质页岩主要富集游离油的孔隙直径拐点约为 30 nm。 富有机质页岩的游离油赋存孔隙直径下限(d_{min})介于 3.5~10.5 nm,含有机质页岩的 d_{min}介于 1.1~3.4 nm,数 值大小与孔隙形态有关。

(3)页岩基质孔隙油可动性受控于油微观赋存 和页岩孔径分布复杂性,通过可动性指数(即游离 油量与中值压力差之比)可有效表征页岩基质孔隙 油的可动性。富有机质页岩的孔隙油可动性指数 (平均 6.24 mg·g⁻¹·MPa⁻¹)高于含有机质页岩(平均 5.20 mg·g⁻¹·MPa⁻¹),反映富有机质页岩中孔隙油可动 性相对较强。孔隙油吸/游比约为 1.5 时可动性普遍较 好。

下一步建议在以下几个方面加强理论研究: ①确 定原位储层条件下页岩基质孔隙内吸附油、游离油含 量及分布,重点攻关吸附油-游离油动态转化规律; ②明确页岩基质孔隙中不同相态页岩油的微观流动特 征及机制; ③通过页岩岩石表面改性、改变储层温压 环境等,促使吸附油向游离油转化,提高页岩油可动 潜力; ④通过改善页岩孔喉微观结构,降低孔喉比, 增强页岩油可动能力。

参考文献

- [1] 金之钧,朱如凯,梁新平,等.当前陆相页岩油勘探开发值得关注的几个问题[J]. 石油勘探与开发, 2021, 48(06): 1276-1287.
 [JIN Z J, ZHU R K, LIANG X P, et al. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 2021, 48(06): 1276-1287.]
- [2] 杨智, 邹才能, 吴松涛, 等. 从源控论到源储共生系统: 论源岩层系油气地质理论认识及实践[J]. 地质学报, 2021, 95(03): 618-631. [YANG Z, ZOU C N, WU S T, et al. From source control theory to source-reservoir symbiosis system: On the theoretical understanding and practice of source rock strata oil and gas geology in China[J]. Acta Geologica Sinica, 2021, 95(03): 618-631.]
- [3] 邹才能,杨智,董大忠,等.非常规源岩层系油气形成分布与前景展望[J]. 地球科学, 2022, 47(05): 1517-1533. [ZOU C N, YANG Z, DONG D Z, et al. Formation, distribution and prospect of unconventional hydrocarbons in source rock strata in China[J]. Earth Science, 2022, 47(05): 1517-1533.]
- [4] WANG X N, LI J R, JIANG W Q, et al. Characteristics, current exploration practices, and prospects of continental shale oil in China[J]. Advances in Geo-Energy Research, 2022, 6(06): 454–459.

- JIN Z J. Hydrocarbon accumulation and resources evaluation: Recent advances and current challenges[J]. Advances in Geo-Energy Research, 2023, 8(01): 1–4.
- [6] 赵贤正,周立宏,蒲秀刚,等.断陷湖盆湖相页岩油形成有利条件及富集特征—以渤海湾盆地沧东凹陷孔店组二段为例[J].石油 学报,2019,40(09):1013-1029. [ZHAO X Z, ZHOU L H, PU X G, et al. Favorable formation conditions and enrichment characteristics of lacustrine facies shale oil in faulted lake basin: a case study of Member 2 of Kongdian Formation in Cangdong sag, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2019, 40(09): 1013-1029.]
- [7] 赵贤正,周立宏,蒲秀刚,等. 湖相页岩滞留烃形成条件与富集模式: 以渤海湾盆地黄骅坳陷古近系为例[J]. 石油勘探与开发, 2020, 47(05): 856-869. [ZHAO X Z, ZHOU L H, PU X G, et al. Formation conditions and enrichment model of retained petroleum in lacustrine shale: A case study of the Paleogene in Huanghua depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2020, 47(05): 856-869.]
- [8] 孙龙德, 刘合, 何文渊, 等. 大庆古龙页岩油重大科学问题与研究路径探析[J]. 石油勘探与开发, 2021, 48(03): 453-463. [SUN L D, LIU H, HE W Y, et al. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China[J]. PETROLEUM EXPLORATION AND DEVELOPMENT, 2021, 48(03): 453-463.]
- [9] 付金华,李士祥,郭芪恒,等.鄂尔多斯盆地陆相页岩油富集条件及有利区优选[J]. 石油学报, 2022, 43(12): 1702-1716. [FU J H, LI S X, GUO Q H, et al. Enrichment condition and favorable area optimization of continental shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2022, 43(12): 1702-1716.]
- [10] 刘惠民. 济阳坳陷古近系页岩油地质特殊性及勘探实践—以沙河街组四段上亚段—沙河街组三段下亚段为例[J]. 石油学报, 2022, 43(05): 581-594. [LIU H. Geological particularity and exploration practice of Paleogene shale oil in Jiyang depression: A case study of the upper submember of Member 4 to the lower submember of Member 3 of Shahejie Formation[J]. Acta Petrolei Sinica, 2022, 43(05): 581-594.]
- [11] 何文渊,蒙启安,冯子辉,等.松辽盆地古龙页岩油原位成藏理论认识及勘探开发实践[J].石油学报,2022,43(01):1-14. [HE W Y, MENG Q A, FENG Z H, et al. In-situ accumulation theory and exploration & development practice of Gulong shale oil in Songliao Basin[J]. Acta Petrolei Sinica, 2022, 43(01):1-14.]
- [12] 马晓潇,黎茂稳,胡克珍,等. 渤海湾盆地济阳坳陷古近系异常高压成因及其与陆相页岩油富集的关系[J]. 石油实验地质, 2023, 45(01): 145-156. [MA X X, LI M W, HU K Z, et al. Abnormal pressure genesis and its relationship with continental shale oil accumulation in Paleogene, Jiyang Depression, Bohai Bay Basin[J]. 2023, 45(01): 145-156.]
- [13] 袁士义, 雷征东, 李军诗, 等. 古龙页岩油有效开发关键理论技术问题与对策[J]. 石油勘探与开发, 2023, 50(03): 562-572. [YUAN S Y, LEI Z D, LI J S, et al. Key theoretical and technical issues and countermeasures for effective development of Gulong shale oil, Daqing Oilfield, NE China[J]. Petroleum Exploration and Development, 2023, 50(03): 562-572.]
- [14] 王勇,王学军,宋国奇,等. 渤海湾盆地济阳坳陷泥页岩岩相与页岩油富集关系[J]. 石油勘探与开发, 2016, 43(05): 696-704.
 [WANG Y, WANG X J, SONG G Q, et al. Genetic connection between mud shale lithofacies and shale oil enrichment in Jiyang Depression, Bohai Bay Basin[J]. PETROLEUM EXPLORATION AND DEVELOPMENT, 2016, 43(05): 696-704.]
- [15] 赵文智,朱如凯,胡素云,等. 陆相富有机质页岩与泥岩的成藏差异及其在页岩油评价中的意义[J]. 石油勘探与开发, 2020, 47(06): 1079-1089. [ZHAO W Z, ZHU R K, HU S Y, et al. Accumulation contribution differences between lacustrine organic-rich shales and mudstones and their significance in shale oil evaluation[J]. Petroleum Exploration and Development, 2020, 47(06): 1079-1089.]
- [16] 李阳, 赵清民, 吕琦, 等. 中国陆相页岩油开发评价技术与实践[J]. 石油勘探与开发, 2022, 49(05): 955-964. [LI Y, ZHAO Q M, LYU Q, et al. Evaluation technology and practice of continental shale oil development in China[J]. Petroleum Exploration and Development, 2022, 49(5): 955-964.]
- [17] JARVIE D M. Shale resource systems for oil and gas: part 2 shale-oil resource systems. Shale reservoirs-giant resources for the 21st century: AAPG Memory [M]. 2012, 97: 89–119.
- [18] 蒋启贵,黎茂稳,钱门辉,等.不同赋存状态页岩油定量表征技术与应用研究[J].石油实验地质,2016,38(06): 842-849.[J].ANG QG,LIMW,QIANMH, et al. Quantitative characterization of shale oil in different occurrence states and its application[J]. Petroleum Geology & Experiment, 2016, 38(06): 842-849.]
- [19] 李志明, 刘鹏, 钱门辉, 等. 湖相泥页岩不同赋存状态油定量对比一以渤海湾盆地东营凹陷页岩油探井取心段为例[J]. 中国矿业大学学报, 2018, 47(06): 1252-1263. [LI Z M, LIU P, QIAN M H, et al. Quantitative comparison of different occurrence oil for lacustrine shale: A case from cored interval of shale oil special drilling wells in Dongying depression, Bohai Bay basin[J]. Journal of China University of Mining & Technology, 2018, 47(06): 1252-1263.]
- [20] 李浩, 陆建林, 王保华, 等. 渤海湾盆地东濮凹陷陆相页岩油可动性影响因素与资源潜力[J]. 石油实验地质, 2020, 42(4): 632-638. [LI H, LU J L, WANG B H, et al. Controlling factors of continental shale oil mobility and resource potential in Dongpu Sag, Bohai Bay Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(04): 632-638.]

M H, et al. Key technologies for pyrolysis analysis of shale oil content[J]. Acta Petrolei Sinica, 2023, 44(02): 329-338.]

- [22] LI Z, ZOU Y R, XU X Y, et al. Adsorption of mudstone source rock for shale oil-experiments, model and a case study[J]. Organic Geochemistry, 2016, 92: 55-62.
- [23] LI J B, JIANG C Q, WANG M, et al. Adsorbed and free hydrocarbons in unconventional shale reservoir: A new insight from NMR T_1 - T_2 maps[J]. Marine and Petroleum Geology, 2020, 116: 104311.
- [24] HU T, PANG X Q, JIANG F J, et al. Movable oil content evaluation of lacustrine organic-rich shales: Methods and a novel quantitative evaluation model[J]. Earth-Science Reviews, 2021, 214: 103545.
- [25] 李士祥,周新平,郭芪恒,等.鄂尔多斯盆地长 73 亚段页岩油可动烃资源量评价方法 [J]. 天然气地球科学, 2021, 32(12): 1771-1784. [LI S X, ZHOU X P, GUO Q H, et al. Research on evaluation method of movable hydrocarbon resources of shale oil in the Chang 73 sub-member in the Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1771-1784.]
- [26] 金旭,李国欣,孟思炜,等. 陆相页岩油可动用性微观综合评价[J]. 石油勘探与开发, 2021, 48(01): 222-232. [JIN X, LI G X, MENG S W, et al. Microscale comprehensive evaluation of continental shale oil recoverability[J]. Petroleum Exploration and Development, 2021, 48(01): 222-232.]
- [27] 杨智峰, 唐勇, 郭旭光, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩油赋存特征与影响因素 [J]. 石油实验地质, 2021, 43(05): 784–796. [YANG Z F, TANG Y, GUO X G, et al. Occurrence states and potential influencing factors of shale oil in the Permian Fengcheng Formation of Mahu Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2021, 43(05): 784–796.]
- [28] ZHANG P F, LU S F, LI J Q, et al. Evaluating microdistribution of adsorbed and free oil in a lacustrine shale using nuclear magnetic resonance: A theoretical and experimental study[J]. Journal of Petroleum Science and Engineering, 2022, 212: 110208.
- [29] 王民,马睿,李进步,等.济阳坳陷古近系沙河街组湖相页岩油赋存机理[J].石油勘探与开发,2019,46(04):789-802. [WANG M, MA R, LI J B, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2019, 46(04): 789-802.]
- [30] 金之钧,王冠平,刘光祥,等.中国陆相页岩油研究进展与关键科学问题[J].石油学报,2021,42(07):821-835. [JIN Z J, WANG G P, LIU G X, et al. Research progress and key scientific issues of continental shale oil in China[J]. Acta Petrolei Sinica, 2021, 42(07):821-835.]
- [31] 王森, 冯其红, 查明, 等. 页岩有机质孔缝内液态烷烃赋存状态分子动力学模拟[J]. 石油勘探与开发, 2015, 42(06): 772-778.
 [WANG S, FENG Q H, ZHA M, et al. Molecular dynamics simulation of liquid alkane occurrence state in pores and fractures of shale organic matter[J]. Petroleum Exploration and Development, 2015, 42(06): 772-778.]
- [32] TIAN S S, XUE H T, LU S F, et al. Molecular simulation of oil mixture adsorption character in shale system[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(09): 6198–6209.
- [33] FEI J S, WANG M, LI J B, et al. Molecular dynamics simulation of adsorption and absorption behavior of shale oil in realistic kerogen slits[J]. Energy & Fuels, 2023, 37: 3654–3671.
- [34] LI J Q, LU S F, CAI J C, et al. Adsorbed and free oil in lacustrine nanoporous shale: A theoretical model and a case study[J]. Energy & Fuels, 2018, 32(12): 12247–12258.
- [35] 曾维主,周国议,宋之光. 松辽盆地青山口组页岩孔隙结构及其对页岩油富集的影响[J]. 地球化学, 2019, 48(6): 632-643. [ZENG W Z, ZHOU G Y, SONG Z G. Influence of pore structure on the shale oil accumulation of the Qingshankou Formation in the Songliao Basin[J]. Geochimica, 2019, 48(6): 632-643.]
- [36] 姜振学,李廷微,宫厚健,等. 沾化凹陷低熟页岩储层特征及其对页岩油可动性的影响[J]. 石油学报, 2020, 41(12): 1587-1600.
 [JIANG Z X, LI T W, GONG H J, et al. Characteristics of low-mature shale reservoirs in Zhanhua sag and their influence on the mobility of shale oil[J]. Acta Petrolei Sinica, 2020, 41(12): 1587-1600.]
- [37] 金之钧,梁新平,王小军,等. 玛湖凹陷风城组页岩油富集机制与甜点段优选[J]. 新疆石油地质, 2022, 43(06): 631-639. [JIN Z J, LIANG X P, WANG X J, et al. Shale oil enrichment mechanism and sweet spot selection of Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2022, 43(06): 631-639.]
- [38] 钱门辉, 王绪龙, 黎茂稳, 等. 玛页1井风城组页岩含油性与烃类赋存状态[J]. 新疆石油地质, 2022, 43(06): 693-703. [Oil bearing properties and hydrocarbon occurrence states of Fengcheng Formation Shale in Well Maye 1, Mahu Sag[J]. Xinjiang Petroleum Geology, 2022, 43(06): 693-703.]
- [39] 党伟,张金川, 聂海宽,等. 页岩油微观赋存特征及其主控因素—以鄂尔多斯盆地延安地区延长组7段3亚段陆相页岩为例[J]. 石油学报, 2022, 43(04): 507-523. [DANG W, ZHANG J C, NIE H K, et al. Microscopic occurrence characteristics of shale oil and their main controlling factors: a case study of the 3rd submember continental shale of Member 7 of Yanchang Formation in Yan'an area, Ordos Basin[J]. Acta Petrolei Sinica, 2022, 43(04): 507-523.]
- [40] 王继超,崔鹏兴,刘双双,等.不同孔隙结构页岩油储层可动流体分布特征[J].西安石油大学学报(自然科学版), 2023, 38(01): 59-68. [WANG J C, CUI P X, LIU S S, et al. Distribution characteristics of movable fluid in shale oil reservoirs with differentpore structures[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2023, 38(01): 59-68.]

- [41] LI J Q, LU S F, XIE L J, et al. Modeling of hydrocarbon adsorption on continental oil shale: A case study on n-alkane[J]. Fuel, 2017, 206: 603-613.
- [42] 李俊乾, 卢双舫, 张婕, 等. 页岩油吸附与游离定量评价模型及微观赋存机制[J]. 石油与天然气地质, 2019, 40(03): 583-592. [LI J Q, LU S F, ZHANG J, et al. Quantitative evaluation models of adsorbed and free shale oil and its microscopic occurrence mechanism[J]. Oil & Gas Geology, 2019, 40(03): 583-592.]
- [43] 聂海宽,张培先,边瑞康,等.中国陆相页岩油富集特征[J]. 地学前缘, 2016, 23(02): 55-62. [NIE H K, ZHANG P X, BIAN R K, et al. Oil accumulation characteristics of China continental shale[J]. Earth Science Frontiers, 2016, 23(02): 55-62.]
- [44] 鲜成钢, 李国欣, 李曹雄, 等. 陆相页岩油效益开发的若干问题[J]. 地球科学, 2023, 48(01): 14-29. [XIAN C G, LI G X, LI C X, et al. Key evaluation aspects for economic development of continental shale oil[J]. Earth Science, 2023, 48(01): 14-29.]
- [45] JARVIE D M. Components and processes affecting producibility and commerciality of shale resource systems[J]. Geologica Acta, 2014, 12(04): 307–325.
- [46] LI J Q, WANG S Y, LU S F, et al. Microdistribution and mobility of water in gas shale: A theoretical and experimental study[J]. Marine and Petroleum Geology, 2019, 102: 496–507.
- [47] 刘惠民,张顺,包友书,等.东营凹陷页岩油储集地质特征与有效性[J].石油与天然气地质,2019,40(03):512-523. [LIU H M, ZHANG S, BAO Y S, et al. Geological characteristics and effectiveness of the shale[J]. Oil & Gas Geology, 2019, 40(03): 512-523.]
- [48] 刘惠民,于炳松,谢忠怀,等. 陆相湖盆富有机质页岩微相特征及对页岩油富集的指示意义—以渤海湾盆地济阳坳陷为例[J]. 石油学报, 2018, 39(12): 1328-1343. [LIU H M, YU B S, XIE Z H, et al. Characteristics and implications of micro-lithofacies in lacustrine-basin organic-rich shale: a case study of Jiyang depression, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2018, 39(12): 1328-1343.]
- [49] 刘惠民,李军亮,刘鹏,等. 济阳坳陷古近系页岩油富集条件与勘探战略方向[J]. 石油学报, 2022, 43(12): 1717-1729. [LIU H M, LI J L, LIU P, et al. Enrichment conditions and strategic exploration direction of Paleogene shale oil in Jiyang Depression[J]. Acta Petrolei Sinica, 2022, 43(12): 1717-1729.
- [50] 张林晔,包友书,李钜源,等.湖相页岩油可动性一以渤海湾盆地济阳坳陷东营凹陷为例[J].石油勘探与开发,2014,41(06):641-649. [ZHANG L Y, BAO Y S, LI J Y, et al. Movability of lacustrine shale oil: A case study of Dongying Sag, Jiyang Depression, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2014, 41(06): 641-649.]
- [51] 李俊乾,卢双舫,张鹏飞,等.页岩基质孔隙水定量表征及微观赋存机制[J].石油学报,2020,41(08):979-990. [LI J Q, LU S F, ZHANG P F, et al. Quantitative characterization and microscopic occurrence mechanism of pore water in shale matrix[J]. Acta Petrolei Sinica, 2020, 41(08): 979-990.]
- [52] LI J Q. Development of adsorption ratio equation and state equation of liquid and their geological significance[J]. Capillarity, 2021, 4(04): 63-65.
- [53] ZHENG S J, YAO Y B, LIU D M, et al. Re-evaluating the accurate multiphase water distribution in coals: Unifying experiment and theory[J]. Chemical Engineering Journal, 2023, 464: 142637.
- [54] 赵文智,朱如凯,刘伟,等.中国陆相页岩油勘探理论与技术进展[J]. 石油科学通报, 2023, 8(04): 373-390. [ZHAO W Z, ZHU R K, LIU W, et al. Advances in theory and technology of non-marine shale oil exploration in China[J]. Petroleum Science Bulletin, 2023, 8(04): 373-390.]
- [55] 李斌会,邓森,刘勇,等. 松辽盆地古龙页岩油储层可动流体饱和度测定方法[J]. 大庆石油地质与开发, 2022, 41(03): 130-138.
 [LI B H, DENG S, LIU Y, et al. Measurement method of movable fluid saturation of Gulong shale oil reservoir in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(03): 130-138.]
- [56] LI J Q, CAI J C. Quantitative characterization of fluid occurrence in shale reservoirs[J]. Advances in Geo-Energy Research, 2023, 9(03): 146–151.